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Abstract

Climate change affects agricultural production through land productivity and multicropping capac-
ities. Given agriculture’s substantial contribution to both income and employment in developing
economies, evolving agro-climatic conditions can reshape labor reallocation and agricultural pro-
duction. I develop a dynamic spatial general equilibrium model incorporating farmers’ optimal crop
choices, international trade, and forward-looking migration. Under RCP 8.5, global welfare effects
on agricultural workers are modest but vary significantly across countries. Results highlight that
general equilibrium effects of labor mobility are nontrivial, and domestic structural transformation
can play a crucial role in mitigating adverse impacts of climate change.
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1 Introduction

Climate change has heterogeneous impacts across regions and sectors, with agriculture standing
out as a particularly vulnerable and concerning sector (e.g., Rudik et al., 2022; Nath, 2023; Zap-
pala, 2024). Given the sector’s significant role in both income and employment in many developing
economies1, it has emerged as a crucial agenda to understand the potential consequences of climate
change on agricultural sector. From a production perspective, climate change can directly influence
agricultural production through two primary channels: yield and multicropping. The impact on
yields is highly heterogeneous across countries, especially given the current geographical distribu-
tion of irrigation resources, with the potential to reshape patterns of comparative advantage across
countries and crops. Additionally, climate change can affect the capacity of multicropping—the
practice of growing crops more than once per year—which can influence the effective size of
harvested areas. On the labor market side, climate change may affect labor reallocation through
income shocks; yet, these adjustments are imperfect and are long-term processes due to existing
frictions. Furthermore, the labor reallocation due to climate change is likely to interact with the
underlying forces of structural transformation shaping long-term economic growth, as historical
patterns have indicated. While there has been a growing body of studies that attempt to evaluate the
impact of climate change, a critical gap remains in the literature connecting the fundamental eco-
nomic forces between adaptation in agricultural production and labor reallocation within a dynamic
general equilibrium framework.

This paper develops and quantifies a dynamic spatial general equilibrium model to examine
the effects of climate change on agricultural production and labor markets. The model incorporates
three key market mechanisms: optimal crop choices (crop switching), international trade, and labor
mobility. First, each country grows multiple crops on given land and optimize their land alloca-
tion among crops in response to climate change shocks, including yield and multicropping capacity
changes. The general equilibrium framework allows us to capture both Ricardian (comparative
advantage) and Heckscher-Ohlin (relative factor abundance) effects in agricultural production re-
sulting from agro-climatic changes, accounting for substantial heterogeneity across countries and
crops. Second, as crops are traded internationally, an agro-climatic shock in one country can propa-
gate through global markets, influencing crop prices, production, and consumption choices around
the world. Third, households make forward-looking migration decisions, choosing whether to re-
locate across countries and sectors—agriculture and non-agriculture—based on expected lifetime
utility. Labor markets with higher utility attract more workers, though migration is subject to bi-
lateral frictions. To capture the full interaction of these market adjustment forces, the model builds
on the heterogeneous land model (Eaton and Kortum, 2002; Sotelo, 2020), incorporates Armington
(1969) trade, and features dynamic migration decision of heterogeneous agents as in Artuç et al.
(2010) and Caliendo et al. (2019).

This study leverages detailed spatial data on agro-climatic conditions from the Global Agro-

1The average employment share in the agriculture sector is 34.2% among non-OECD countries, while it is 4.8%
among OECD countries. The average GDP share of the agriculture sector is 15% among non-OECD countries, while
it is 2.5% among OECD countries. Author’s calculation is based on the year 2020, using World Bank data.
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Ecological Zones (GAEZ) v4 project, including information on potential yield, multicropping ca-
pacity, and irrigation distribution around the world. The model is quantified for 60 countries (re-
gions), aggregating 145 countries globally, and covers 10 major crops, with simulation periods
projected through the end of this century. Using dynamic hat algebra developed in Caliendo et al.
(2019), I find a transition path of the global agricultural production model toward the sequential
equilibrium, by expressing time-varying variables as time differences and solving a system of non-
linear equations of these time differences. This approach enables the identification of equilibrium
solutions without requiring estimation of a large set of fundamental variables2—a particularly use-
ful feature given that agro-climatic potential yield data from GAEZ does not precisely reflect levels
of land productivity within the model.

When mapping the model to data, the framework captures the heterogeneous forces and fric-
tions governing labor reallocation across countries and sectors. Leveraging dynamic hat algebra,
the model is quantified without explicitly estimating bilateral migration costs. Instead, the sequen-
tial equilibrium solution is conditioned on observed initial migration flows, which inherently embed
information on the economic forces and barriers shaping labor reallocation. For example, a large
share of domestic migration from agriculture to non-agriculture reflects a substantial income gap
between the two sectors and relatively low migration costs. Given limitation on the availability
of global migration flows data, this study introduces a novel approach to capturing these hetero-
geneous labor reallocation dynamics within a global, cross-country, and cross-sector framework.
Migration flow data are constructed to ensure that domestic net sectoral flows precisely capture
observed changes in sectoral populations over time while incorporating population growth. Ac-
counting for heterogeneity in domestic sectoral flows is crucial for two reasons. First, domestic
sectoral migration is a key characterization of structural transformation, reallocating labor between
agriculture and non-agriculture. Second, domestic sectoral flows constitute the predominant form
of labor mobility, far exceeding cross-country international migration flows. The model simulations
here explicitly capture cross-country heterogeneity in structural transformation: countries such as
Vietnam and China experience relatively rapid transitions out of agriculture, while parts of Latin
America and Southern Africa exhibit reversals in structural transformation trends.

The model simulations provide valuable insights into the economic impacts of climate change
on agricultural production and labor dynamics. Over time, the model captures a gradual decline
in agricultural employment share across most countries, reflecting domestic sectoral labor mobility
and structural transformation in the labor market. Additionally, the results suggest that negative
income shocks induced by climate change can accelerate structural transformation out of agricul-
ture, leading to a lower share of agricultural employment by the end of the century. In regions such
as Northern and Western Africa, agricultural employment declines more rapidly in the presence of
climate change than in its absence, whereas in Central Asia, positive income shocks are projected to
slow structural transformation, resulting in a higher share of agricultural employment under climate
change.

2The fundamental variable refers to the exogenous state variable (Caliendo et al., 2019). Specifically, the model
solution does not require levels of land productivities, total factor productivities in agriculture and non-agriculture,
bilateral trade costs, and migration costs.

2



Draft version: February 19, 2025

The welfare analysis under the pessimistic climate scenario RCP 8.5 reveals that the global
aggregate impact of climate change on agricultural workers is close to zero (0.01%), while there
exists considerable heterogeneity across countries. Higher-latitude countries, such as Canada, the
U.S., Russia, and those in Northern Europe, generally benefit, while countries in northern Africa,
as well as many in Latin America and South-eastern Asia, are negatively affected. The model sim-
ulation also captures the timing and extent of land reallocation across crops. In Latin America, for
instance, Brazil and Argentina reallocate a significant share of cropland from soybeans to maize,
yet still face welfare losses. The effects are particularly pronounced in highly specialized agri-
cultural economies: Mongolia and Australia, where over 90% their land are dedicated to a wheat
production, are expected to experience starkly divergent outcomes, with Mongolia realizing the
greatest welfare gain (+3.85%) and Australia suffering the largest loss (-1.23%). Lastly, an alterna-
tive welfare evaluation using models that exclude labor mobility reveals amplified welfare effects in
both directions, with losses reaching as high as (-5.16%) and gains up to (+7.46%). This result un-
derscores the crucial role of labor mobility in mitigating the adverse effects of climate change and
suggests that abstracting from dynamic labor market adjustments may result in an overestimation
of these impacts.

To further investigate the role of labor mobility, I conduct counterfactual exercises in which
bilateral migration costs are assumed to rise to prohibitive levels, effectively eliminating cross-
country and cross-sector mobility. The results highlight the substantial welfare implications of
labor mobility: in the baseline scenario, where migration costs remain at current levels, agricultural
workers experience a global welfare gain of +14.24% compared to a scenario with no mobility.
These effects are unevenly distributed, with the largest gains observed in Vietnam, the Philippines,
and China—countries where labor flows out of agriculture are most pronounced. A second counter-
factual exercise isolates the role of domestic sectoral mobility by prohibiting international migration
while allowing labor reallocation across sectors within countries. The results suggest that welfare
effects under this scenario closely resemble those in the first counterfactual exercise, consistent with
empirical evidence that most labor mobility occurs domestically rather than internationally. These
findings underscore the critical role of domestic structural transformation in mitigating the adverse
welfare effects of climate change for agricultural workers. While international migration remains
constrained by high barriers, facilitating sectoral mobility within countries could serve as a key
policy instrument to address prevalent income disparities between agricultural and non-agricultural
workers, complementing broader climate adaptation efforts.

To the best of my knowledge, this is the first dynamic spatial general equilibrium model to eval-
uate the impact of climate change on global agricultural production while incorporating forward-
looking labor mobility within a multi-country, multi-crop production framework. Notably, the
model captures heterogeneous forces and frictions governing structural transformation across coun-
tries, addressing a critical gap in the literature. Furthermore, the quantification approach accounts
for rich heterogeneity in climate change shocks across countries and crops, integrating both yield
and multicropping capacity shocks based on existing irrigation distributions. This framework ex-
tends beyond prior studies (Costinot et al., 2016; Gouel and Laborde, 2021), which primarily focus
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on potential yield changes, offering a more comprehensive evaluation of climate change’s potential
impact on global agriculture. Finally, the optimal land allocation over time across countries and
crops is explicitly addressed in the model framework, with simulation results providing useful and
practical insights for governments and farmers for future land use optimization.

Related Literature — This study relates to and contributes to several branches of literature. Firstly,
this study closely connects to the literature on heterogeneous land models in a spatial general equi-
librium framework (e.g., Costinot et al., 2016; Gouel and Laborde, 2021; Sotelo, 2020; Pellegrina,
2022; Conte, 2022; Farrokhi and Pellegrina, 2023). These studies have incorporated the modern
Ricardian trade framework à la Eaton and Kortum (2002) to generate predictions for land shares
across crops, by exploiting high-resolution crop-yield data from the GAEZ project. In particular,
Costinot et al. (2016) and Gouel and Laborde (2021) analyze the impact of agricultural productiv-
ity shocks under climate change and emphasize the role of crop switching and international trade
as measures to mitigate adverse welfare impacts. This study closely relates to and complements
Costinot et al. (2016) and Gouel and Laborde (2021) by explicitly addressing labor mobility and
structural transformation, and by enriching the model quantification. Recent studies by Pellegrina
(2022) and Conte (2022) develop spatial general equilibrium models that incorporate both trade and
migration. These studies are set in a static context and focus on a single country, Brazil (Pellegrina,
2022), or a continent, sub-Saharan Africa (Conte, 2022).

This study also contributes to the literature analyzing the interactions between climate change
and migration. In particular, recent advancements in tractable quantitative models and computa-
tional methods (e.g., see Redding, 2016; Redding and Rossi-Hansberg, 2017; Caliendo et al., 2019;
Kleinman et al., 2023) have spurred rapid growth in the literature on dynamic spatial general equi-
librium models. These studies quantify the impact of climate change in a spatial general equilib-
rium model with internal or international forward-looking migration, focusing on different aspects
of the economy: investment decision and technological diffusion (Desmet and Rossi-Hansberg,
2015; Desmet et al., 2018, 2021); sectoral and geographical specialization (Conte et al., 2021);
education-specific migration (Burzyński et al., 2022); endogenous use of fossil fuels and clean en-
ergy (Cruz, 2023); sectoral productivity and local amenity shocks (Rudik et al., 2022); impact of
storms and extreme heat waves (Bilal and Rossi-Hansberg, 2023). In these studies, agriculture is
often considered an aggregate sector or a part of the aggregate economy, without addressing the
adjustment role of crop choices within the agriculture sector. Another group of studies empirically
assesses the impact of weather shocks on internal or international migration patterns (e.g., Cattaneo
and Peri, 2016; Peri and Sasahara, 2019).

Additionally, this study connects to the classical macroeconomics literature on structural trans-
formation of an economy (e.g., see Herrendorf et al., 2014). In the literature, it has been well-
understood that sectoral allocation of labor appears to be distorted in many developing economies
(Vollrath, 2009; Gollin et al., 2014), and that labor market frictions are the key contributor pro-
hibiting the labor reallocation from agriculture to non-agriculture, resulting an excessively large
share of labor remaining in the agricultural sector with low labor productivity (Restuccia et al.,
2008; Tombe, 2015). While there is a relatively large body of literature analyzing labor reallo-
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cation from agriculture to non-agriculture sector or rural to urban areas within specific countries
(e.g., Herrendorf et al. (2013) for the US; Tombe and Zhu (2019); Adamopoulos et al. (2024) for
China; Munshi and Rosenzweig (2016); Imbert and Papp (2020) for India; Lagakos et al. (2023)
for Bangladesh)3, there are relatively fewer studies that examine structural transformation in la-
bor markets across many countries around the world. An exception is Cruz (2023), who develops
a model incorporating sectoral reallocation, dynamic labor mobility, and an endogenous climate
system, where temperature increases have heterogeneous impacts on productivity across regions
and sectors. This study also considers bilateral migration costs across region- and sector-specific
labor markets but takes a different approach to constructing its migration flow matrix.4 Nath (2023)
also examines potential sectoral reallocation between agriculture and non-agriculture in response
to climate change but does not account for the economy’s dynamic features or the costs of mobility
across space and sectors.

2 Background and Motivation

This section briefly introduces the data and the empirical patterns that motivate the selection of
model components. To assess the impact of climate change on future agricultural production, this
study utilizes projections from the GAEZ version 4 dataset, provided by the FAO. The GAEZ
dataset includes projections of agro-climatic potential yield, potential for multiple cropping prac-
tices, and the current geographical distribution of irrigation availability, all at a 5 arc-minute spatial
resolution5. Following Costinot et al. (2016), I use the climate model HadGEM2-ES and adopt the
pessimistic scenario RCP 8.5 as the baseline scenario.6 This paper considers 10 major crops and
60 countries (regions) covering 145 countries globally.

Potential Yield — The GAEZ data provides information on agro-climatic potential yield, evalu-
ating agro-climatic environments based on climatic factors such as precipitation and temperature,
as well as soil and terrain conditions (Fischer et al., 2021). The potential yield is assessed under a
high-input scenario—including full mechanization, a management system, and the optimal use of
intermediate inputs such as pesticides and fertilizers—thereby providing the upper limit of agro-
nomically feasible production under specific climatic conditions. The agro-climatic potential yield
estimates are provided for all terrains on Earth for historical, current, and future potential climate
scenarios, irrespective of whether the land is currently used for growing certain crops or not, and
are provided for two water supply scenarios, irrigation and rain-fed conditions.

3For a more extensive review of the literature on structural transformation out of the agricultural sector, see Gollin
(2023).

4Cruz (2023) constructs a migration flow dataset encompassing international and intranational migration flows,
with six sectors and 287 regions worldwide. The study first constructs region-sector migration stocks and employs a
Poisson regression model to estimate migration flows. In contrast, this paper constructs migration flows by capturing
domestic sectoral net flows, which exactly reflect observed population changes in region-sector labor market.

5This is approximately 9 x 9 km at the equator.
6In the GAEZ project, future projections are based on five climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-

CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) and four climate scenarios (RCP 2.6, 4.5, 6.0, and 8.5), with
projections extending to the end of the century (Fischer et al., 2021). The sensitivity of the results under different
climate models and scenarios is presented in Appendix E.2.
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Stable water supply is a critical factor influencing potential yields. Additionally, there is large
spatial heterogeneity in availability of irrigation facilities across croplands, which further affects
how countries will be hit differently from climate change. See Figure C.4 in for the share of
croplands equipped with irrigation by country. I use current irrigation distribution data from the
GAEZ dataset to adjust potential yields based on irrigation availability and aggregate the results at
the country level, which is the unit of analysis for this study. See Appendix C.1 for details.

Figure 1a summarizes future changes in potential yield for the highest-revenue crop in each
country under the RCP 8.5 scenario, depicting the percentage change in potential yield by 2100
relative to the the year 2020. For example, the figure shows that maize, China’s highest-revenue
crop in the current period, is expected to see an increase in potential yield, while Brazil’s highest-
revenue crop, soybeans, is expected to experience a decrease in potential yield. This figure suggests
significant heterogeneity across countries in future potential yield changes, suggesting that some
countries may be at higher risk if cropland allocation is not adjusted to account for the new agro-
climatic environment, particularly given current irrigation availability.

The potential for climate change to reshape comparative advantage across both countries and
crops in agricultural production has been well-emphasized by Costinot et al. (2016). As climate
change alters agro-climatic potential yields, some countries may experience an either absolute or
relative increase in potential yield, while others may experience a decline. Similarly, within a coun-
try, certain crops may see an either absolute or relative increase in potential yield, whereas others
may face a decrease. These shifts in potential yield are likely to alter the comparative advantage in
agricultural production from a traditional Ricardian perspective, driving changes in land allocation
as countries devote more land to crops where they gain a comparative advantage.

Multicropping and Harvested Areas — It is important to note that the size of physical cropland
areas can differ significantly from the size of harvested areas—the total area of croplands actu-
ally harvested—due to multicropping practices, where crops are grown multiple times throughout
the year. For example, some regions in Southern Asia and Latin America may cultivate crops up
to three times per year. As noted by Gouel and Laborde (2021), neglecting multicropping prac-
tices can introduce substantial bias into model predictions. Previous studies, such as Costinot
et al. (2016) and Gouel and Laborde (2021), examined productivity shocks from climate change
but were unable to properly address the gap between physical and harvested areas due to limited
data availability. The latest version of the GAEZ dataset (version 4) includes multicropping zone
information, enabling us to distinguish between physical and harvested areas more accurately.

The GAEZ project classifies all lands on Earth into 9 zones based on multicropping potential,
ranging from zero cropping to triple rice cropping. Similar to the agro-climatic potential yield
estimates, multicropping potential is assessed solely based on agro-climatic characteristics, such
as the length of growing periods and temperature and is provided for two different water scenar-
ios—irrigation and rain-fed conditions—covering both historical and future periods. Multicropping
may involve planting different crops (e.g., maize and bean) or growing identical crops (e.g., rice)
sequentially in the same field after harvest. While practical multicropping may involve specific
combinations of crops planted together to optimize production, the current version of the GAEZ

6



Draft version: February 19, 2025

data provides multicropping zone information only as the number of potential multicroppings for
all crops, except for rice. Given this data constraint and to reduce the complexity of model quan-
tification, I have simplified the multicropping zone information by regrouping the 9 zones into 4
classifications, ranging from zero to triple cropping, irrespective of crop types. Similar to poten-
tial yield, I use the irrigation distribution data to adjust multicropping potentials based on current
irrigation availability. See appendix C.2 for details of data construction.

Essentially, climate change impacts multicropping potential, which could affect the effective
size of harvested areas, assuming that the size of physical areas remains constant over time. Thus,
the climate change impact on agricultural production involves not only changes in relative pro-
ductivity (Ricardian) but also relative factor abundance (Heckscher-Ohlin). Figure 1b displays the
percentage change in multicropping potential by 2100 compared to 2020. Countries in the mid-
latitudes of the northern hemisphere are expected to see an increase in multicropping potential,
while most countries in the southern hemisphere are projected to experience a decrease.

Structural Transformation — The final empirical pattern motivating the model choice is struc-
tural transformation in the labor market. Structural transformation broadly refers to the reallocation
of economic activity or resources across sectors–agriculture, manufacturing, and services– in the
process of economic development (Herrendorf et al., 2013, 2014). A central feature of this process
is reallocation of the labor force, typically from less productive sectors (e.g., agriculture) to more
productive sectors (e.g., manufacturing or services), often captured by changes in employment
shares. Figure 2a summarizes the historical transition in the share of agricultural employment, ag-
gregated at the sub-regional level, indicating a widespread decline in agricultural employment over
the past 30 years (1990–2020). Developing economies with previously higher shares of agricultural
employment, particularly in Asia and Africa, have experienced a rapid decline, while developed
economies have seen a more gradual decrease, as their agricultural employment share is already
relatively low. However, not all developing economies with a high share of agricultural employ-
ment have experienced declining trends at the same pace, indicating the existence and potential
heterogeneity in the barriers associated with structural transformation out of agriculture. The evi-
dence on the barriers of structural transformation has been also documented in previous literature
(e.g., Restuccia et al., 2008; Herrendorf and Schoellman, 2018).

While there is no straightforward consensus on the driving force of structural transformation7,

7In earlier closed-economy models, such as the Solow-Swan framework (Solow, 1956; Swan, 1956), any income-
improving economic shock, including agricultural productivity, combined with non-homothetic preferences—where
the income elasticity for agricultural goods is less than one—leads to a decline in both agricultural employment and
the agricultural sector’s value-added share. In open-economy models, however, structural transformation may not
be explained by productivity growth. For instance, Matsuyama (1992) demonstrates that countries with relatively
high agricultural productivity may fully specialize in agricultural production, without experiencing a contraction in
the agricultural sector. Gollin (2023) further emphasizes that the effect of an agricultural productivity shock on the
agricultural employment share depends critically on the specific country and crop. In cases where a country experiences
a productivity shock in crops with high global demand and prices, the shock may result in expanded production and an
increase in the agricultural sector’s value-added share. Conversely, if the crop primarily serves inelastic local demand,
the productivity shock may lead to lower prices, potentially reducing the agricultural sector’s value-added. Whether
such a productivity shock increases or decreases agricultural employment may also depend on the labor intensity of the
crops involved. For a more comprehensive review of the relevant literature, see e.g., Gollin (2023).
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structural transformation is closely related to the income gap between sectors. To see if this rela-
tionship exists, I run a simple regression as follows:

yit = β log(xit) +Di +Dt + ϵit, (1)

where yit is the share of domestic net migration flows from agriculture to non-agriculture (with
5-year intervals)8, and log(xit) denotes the log ratio of per capita income between non-agricultural
and agricultural workers (calculated as 5-year averages), defined as the log of GDP per capita in
the non-agricultural sector divided by GDP per capita in the agricultural sector. This equation is
estimated after controlling for country (Di) and year (Dt) fixed effects, using panel data for 60
countries (regions) from 1990 to 2015 at 5-year intervals. In Figure 2b, the slope (β) depicts this
relationship between the income gap and structural transformation through migration flows out
of agriculture, by partialling out the country and year fixed effects from both the dependent and
independent variables. The results are clear and intuitive: a larger income gap between sectors is
positively associated with a higher share of workers transitioning out of agriculture. This aligns
with the classical view that labor reallocation should eventually lead to equalization of marginal
product of labor across sectors—even though income per capita does not exactly correspond to
the marginal product of labor, they are closely related—if there are no barriers across sectors.
Furthermore, these findings suggest that sectoral income shocks from climate change have the
potential to influence structural transformation; In a country where income from agricultural sector
becomes relatively less attractive due to climate change, the force driving transformation out of
agriculture may become stronger. Conversely, if the agricultural sector becomes more attractive,
the force of structural transformation may weaken.

These empirical patterns together highlight the importance of incorporating labor mobility
when assessing long-term impacts of climate change, and rationalizes the model choice of labor
mobility as a dynamic discrete choice problem à la Artuç et al. (2010) and Caliendo et al. (2019).
In the model, labor mobility is considered in both spatial (cross-country) and sectoral (cross-sector)
dimensions, where the relative income gap (through utility) drives labor flows, and households en-
counter frictions when changing either country or sector. Among these flows, domestic cross-sector
mobility from agriculture to non-agriculture, in particular, captures structural transformation. Al-
though the term migration is often associated with cross-country population flows, I refer to all
labor flows as migration, which is consistent with the literature.

3 A Quantitative Structural Model

This section presents a dynamic spatial model to evaluate the general equilibrium impact of agricul-
tural productivity shocks induced by climate change, incorporating three crucial aspects of market
adjustment mechanisms: farmers’ optimal crop choice, international trade, and labor reallocation.

8For domestic net migration flows, a positive value indicates a net movement of people from the agricultural sector
to the non-agricultural sector, while a negative value signifies the reverse. Details on the construction of migration
flows are provided in Section 5.3 and Appendix D.2.
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Essentially, the static component of agricultural production builds upon the heterogeneous land
model in Sotelo (2020), while the dynamic component of labor mobility closely follows Caliendo
et al. (2019). The productivity shock on agriculture is expected to be highly heterogeneous across
countries and even across crops within a single country, potentially resulting in large-scale varia-
tion in comparative advantages around the world. Farmers in each country will re-optimize their
choice of crop production such that their choice maximizes the return to land, with crop prices
being adjusted through international crop markets. Furthermore, countries with severely negative
agricultural productivity shocks may experience a reduction in income for households working in
agricultural sector, altering the forces of labor reallocation across regions and sectors. The quanti-
tative structural framework in this paper allows us to study the general equilibrium effects resulting
from interactions of the crop-level production adjustments, market adjustments through interna-
tional trade, and labor dynamics.

3.1 Environment

Consider a world economy consisting of N countries, where each country’s economy is divided
into two output sectors: agriculture (A) and non-agriculture (M). Countries are indexed by n ∈
N ≡ {1, · · · , N}, and the sector is indexed by s ∈ S ≡ {A,M}. In the agricultural sector, labor,
land, and intermediate inputs are used to produced crop products j ∈ J ≡ {1, · · · , J}, where J
is a set of crops. The non-agricultural sector consists of a single good j ∈ J o ≡ {0}, which is
an aggregate of all other products and serves as a numeraire. The production of non-agricultural
goods requires labor and structure inputs9. Time is discrete and denoted by t = 0, 1, 2, · · ·.

The endogenous state variable considered in this model is population Lns
t for each labor market

of country-sector pair. The initial allocation of population Lns
0 is taken as given. Apart from labor,

each country is endowed with an exogenous supply of other production inputs: The agricultural
land in country n is comprised of a continuum of heterogeneous plots indexed by ω ∈ Ωn

t , where
Ωn

t is the set of plots in country n. The total amount of land is denoted by Hn
t =

∫
Ωn

t
dω. The

intermediate inputs Mn
t used for crop production include fertilizers, pesticides, the use of mecha-

nization, etc., and the structure input is a composite of local inputs, both of which are considered
to be supplied exogenously in each country.

The model consists of four types of agents. In each labor market, there are households max-
imizing their lifetime utility by consuming goods and making dynamic migration decisions each
period. Each household inelastically supplies one unit of labor and receives a competitive market
wage from the local labor market. Local farmers produce crop products by hiring labor, land, and
intermediate inputs from the local market. Non-agricultural products are also produced by local
firms that hire labor and structure inputs from the local market. All factor and output markets
are assumed to be perfectly competitive, resulting in zero profits for local farmers and firms. Fi-
nally, local governments, owning land, intermediate inputs, and structure inputs in each country,
redistribute rental revenues to households residing in each country.

9Structure input is essentially non-accumulating capital.
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3.2 Prices and wages

In country n, the local price of good j is denoted by pnj
t . The rental rate of plot ω for crop j in

country n is rnj
t (ω), while the rental rates of intermediate input and structure input are zn

t and ιnt ,
respectively. Each sector within a country has its own market wages, wn A

t andwn M
t for agricultural

sector and non-agricultural sector, respectively.

3.3 International Trade

Trade is subject to a standard iceberg cost τm,n,j
t ≥ 1, such that τm,n,j

t units of products need to be
produced and shipped from region m for one unit to be consumed in region n. Then no-arbitrage
requires:

pm,n,j
t = τm,n,j

t pmj
t , (2)

where pmj
t is the local price of product j in origin country m. Note that, by definition, the trade

value of good j imported from region m to n is Xm,n,j
t = τm,n,j

t pm,j
t cm,n,j

t , where cm,n,j
t is the

consumption of good j in region n imported from regionm. For the case of domestic consumption,
the iceberg trade cost is simply set to be τn,n,j

t = 1.

3.4 Preferences

Households have logarithmic utility uns
t = log(Cns

t ), where Cns
t is an aggregate consumption of

households located in country n and working for sector s. The aggregate consumption Cns
t is

defined as:
Cns

t =
(
cns,A

t

)ϕn (
cns,M

t

)1−ϕn

, (3)

where cns,A
t and cns,M

t are agricultural and non-agricultural consumption, respectively, and ϕn is a
preference parameter capturing the expenditure share of the agricultural consumption in country n.

Agricultural consumption is a CES composite of various crop products with its associated
aggregate price index given by:

cns,A
t =

∑
j∈J

(ϕn,j)1/κ(cns,j
t )(κ−1)/κ

κ/(κ−1)

P n
t =

∑
j∈J

ϕn,j(P nj
t )1−κ

1/(1−κ)

,

(4)

where cns,j
t is the consumption of crop j, and P nj

t is a consumption price of crop j in country n.
Here, ϕn,j

t ≥ 0 is a preference parameter for good j in region n, and κ > 0 is the elasticity of
substitution between different crop products.

The consumption of each crop product is assumed to be an Armington composite of the given
product from different origins (Armington, 1969). Accordingly, cns,j

t and its associated price index

10
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are given by:

cns,j
t =

( ∑
m∈N

(ϕm,n,j)1/δ(cm,ns,j
t )(δ−1)/δ

)δ/(δ−1)

P nj
t =

( ∑
m∈N

ϕm,n,j(pm,n,j
t )1−δ

)1/(1−δ)

,

(5)

where cm,ns,j is the consumption of crop j imported from country m, consumed by a household in
country n working for sector s, and pm,n,j

t is the import price of crop j from origin country m in
the destination country n. The parameter ϕm,n,j ≥ 0 captures preference for crops imported from
country m and consumed by country n, and δ > 0 is the elasticity of substitution between crop
products from various origins. The Armington assumption considers agricultural products from
different countries as imperfect substitutes, despite their often homogeneous nature. This CES-
type specification is useful and has been adopted in previous studies, as it simplifies the problem
by eliminating the need to determine whether a country is a net exporter or importer, as well as its
trading partners (Costinot et al., 2016).

3.5 Household Migration

The migration decision of households is a dynamic discrete choice problem following Artuç et al.
(2010) and Caliendo et al. (2019). For each country-sector pair, the labor market consists of a
mass Lns

t of households at the beginning of time t. Each household inelastically provides one unit
of labor, receives a competitive market wage wns

t , and make consumption. At the end of each
period, households have an option to relocate to a different labor market, but there is a publicly
known migration costs ζns,mz ≥ 0, capturing spatial and sectoral reallocation frictions. Households
also learn about their idiosyncratic preference shock ϵmz

t , which will be realized for any potential
country m and sector z they move to. With complete information and forward-looking behavior,
households optimally choose a labor market maximizing their expected lifetime utility at a discount
factor β, given future realizations of idiosyncratic shocks and migration costs. Then the household’s
dynamic discrete choice problem is expressed as:

vns
t = uns

t + max
m∈N,z∈S

{
β Et(vmz

t+1) − ζns,mz + νϵmz
t

}
, (6)

where vns
t is lifetime utility of the household in country n evaluated at time t, and ν is a parameter

scaling the idiosyncratic shock.
Following the standard assumptions in dynamic discrete choice literature, idiosyncratic shock

ϵmz
t follows a Type-I extreme value distribution (Gumbel) with mean zero, and is independently and

identically distributed across individuals, regions, sectors, and time. Then the household’s dynamic
problem can be rewritten as:

V ns
t = uns

t + ν log
( ∑

m∈N

∑
z∈S

exp
(
βV mz

t+1 − ζns,mz

ν

))
, (7)

11
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where V ns
t ≡ Et(vns

t ) is the expected lifetime utility of the household over a vector of preference
shock ϵt = {ϵmz

t }m∈N, z∈S . Exploiting the properties of extreme value distributions, the migration
share of households from labor market ns to mz is derived as:

µns,mz
t =

exp
(
(βV mz

t+1 − ζns,mz)/ν
)

∑
m̃∈N

∑̃
z∈S

exp((βV m̃z̃
t+1 − ζns,m̃z̃)/ν) . (8)

The above expression for migration share suggests that country-sector pairs with higher expected
lifetime utility, net of migration costs, attract a larger fraction of movers. Also, 1/ν implies the
migration elasticity governing how much migration share responds to the relative differences in
the expected lifetime utility net of migration costs. As the migration elasticity 1/ν approaches
zero, the migration does not respond at all to relative differences in lifetime expected utility across
labor markets. Conversely, when the migration elasticity 1/ν goes to infinity, implying there is
no heterogeneity in idiosyncratic shocks, the migration will fully respond to relative differences in
lifetime expected utility such that there is no differences in lifetime expected utility across all labor
markets.

At the end of time t, but before the migration happens, the population in each country n grows
at an exogenous growth rate gn

t .10 Provided with the migration share, the evolution of the labor
supply in the next period is given by:

Lns
t+1 =

∑
m∈N

∑
z∈S

µmz,ns
t (1 + gm

t )Lmz
t . (9)

3.6 Agricultural Production

The production component of the model closely follows Sotelo (2020) and differs from Costinot
et al. (2016) and Gouel and Laborde (2021) in some key aspects. In Costinot et al. (2016) and
Gouel and Laborde (2021), Leontief production technology over land and labor is assumed, with-
out allowing for substitution between inputs, with heterogeneous total factor productivity. In this
setup, the model assumes Cobb-Douglas technology with heterogeneous land productivity, allow-
ing for substitution of input factors between land, labor, and intermediate inputs. Additionally, this
study considers the unit of land input as the harvested area to account for multicropping practices,
whereas physical land areas was used for the unit of land input in previous studies.

Production Technology — Crop production features a Cobb-Douglas technology with constant
returns to scale that combines labor, land, and intermediate inputs. In country n, the quantity of a
crop j ∈ J produced on a plot ω is given by:

qnj
t (ω) = Bn

t

(
ℓnj

t (ω)
)αnj (

mnj
t (ω)

)ρnj (
hnj

t (ω)Anj
t (ω)

)γnj

, (10)

10The timeline of dynamic process is as follows. In the beginning of each time t, the population for each labor
market Lns

t is given. Then production occurs within each labor market, workers collect their wages, and learn about
their idiosyncratic shock ϵmz

t for all potential labor markets they can move to. After population growth is realized,
workers migrate to their chosen labor market.
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where ℓnj
t (ω) is the labor input, mnj

t (ω) is the intermediate input (e.g., fertilizers, pesticides, and
machinery), and hnj

t (ω) is the land input. The parameters αnj, ρnj, γnj denote factor intensities of
labor, intermediate, and land inputs, respectively, with a constraint of αnj + ρnj + γnj = 1. Each
plot ω is heterogeneous in land productivity, which is represented by Anj

t (ω) ≥ 0. The parameter
Bn

t captures exogenous country-specific total factor productivity.
Following the Ricardian formulation à la Eaton and Kortum (2002), Anj

t (ω) ≥ 0 is assumed to
be independently and identically drawn from a Fréchet distribution for each (n, j, ω), with shape
parameter θ > 1 and scale parameter ΥAnj

t . The scale parameter is defined such that Anj
t =

E[Anj
t (ω)] and Υ ≡ Γ(1− 1

θ
)−1, where Γ(·) denotes the Gamma function. Then the joint distribution

of productivities of different crops is obtained by:

∏
j∈J

Pr
(
Anj

t (ω) ≤ aj
)

= exp
−

∑
j∈J

(
aj

ΥAnj
t

)−θ
 .

With a Fréchet distribution, the shape parameter θ > 1 governs the dispersion of land productivities
within each country, with a higher value denoting smaller heterogeneity in land productivity. The
scale parameter ΥAnj

t > 0 governs the overall level of efficiency in producing a particular crop
in each plot, with a higher value denoting a higher productivity level. If a crop j cannot grow in
country n, Anj

t is set to 0.

Profit Maximization — The representative farmer in country n hires labor and land from the input
market and decides which crops to grow in each plot such that its profit is maximized. Then the
profit maximization problem of the farmer is given by:

max
ℓnj

t (ω),mnj
t (ω),hnj

t (ω)

J∑
j=1

pnj
t q

nj
t −

J∑
j=1

∫
Ωn

(
wn,A

t ℓnj
t (ω) + zn

t m
nj
t (ω) + rnj

t (ω)hnj
t (ω)

)
dω

s.t. qnj
t =

∫
Ωn
Bn

t

(
ℓnj

t (ω)
)αnj (

mnj
t (ω)

)ρnj (
hnj

t (ω)Anj
t (ω)

)γnj

dω,

Under perfect competition, profit maximization results in zero profit for farmers. The difference
between crop revenue and the combined input costs for labor and intermediate inputs is exactly
equal to the rental cost of land. Since the land market is also competitive, farmers choose a crop
that generates the highest rental rate of land. In other words, the profit maximization problem
for crop production is equivalent to a discrete choice problem in which farmers choose a crop
maximizing land rent in a given plot ω.

The rental rate of land can be determined in two steps. First, one can solve the cost minimiza-
tion problem to obtain the cost function of producing a given amount of crop. Second, by exploiting
that the marginal cost of production is equal to the crop price under perfect competition, a relation
can be derived between rental rates and crop prices. Then land rent from the production of crop j
in parcel ω is obtained by:

rnj
t (ω) = Rnj

t A
nj
t (ω), (11)
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where Rnj
t is the rental rate per efficiency unit of land, defined as:

Rnj
t =

(
pnj

t B
n
t

c̄nj(wn A
t )αnj (zn

t )ρnj

)1/γnj

, (12)

where c̄nj = (αnj)−αnj (ρnj)−ρnj (γnj)−γnj . Note that rnj
t (ω) also follows the Fréchet distribution

with shape parameter θ > 1 and scale parameter ΥRnj
t A

nj
t given the distributional assumption on

Anj
t (ω). Properties of the extreme value distribution yield a tractable expression for the probability

that crop j generates the highest land rent among all other crops in a given plot ω. This probability
is equal to the share of land allocated to crop j in country n, as there is a continuum of plots in each
country that share the identical probability of crop choices. Therefore, the share of land allocated
to each crop j in country n is given by:

πnj
t = (Rnj

t A
nj
t )θ∑J

k=1(Rnk
t Ank

t )θ
. (13)

Equation (13) shows that crops of higher land productivity, higher market price, lower labor and
intermediate input costs will take a relatively larger share of land. The shape parameter θ governs
how much land allocation responds to changes in the rental rate per efficiency unit of land Rnj

t or
average level of land productivity Anj

t . Therefore, I refer to θ as land allocation elasticity. A higher
value of θ indicates greater homogeneity in land productivity within a country for the given crop,
leading to larger shifts in response to variations in Rnj

t or Anj
t .

Optimal Revenue and Crop Supply — Given optimal land allocation, the optimal crop revenue
and crop supply can be characterized. First, the average rental rate of land for crop j in country n,
conditional on crop j being chosen, denoted as Φn

t , can be derived as follows:

Φn
t = E

[
Rnj

t A
nj
t (ω)

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
=
(

J∑
k=1

(Rnk
t Ank

t )θ

)1/θ

. (14)

Let us denote the optimal revenue per unit of land for a given plot ω as ψnj
t (ω). The optimal revenue

from growing crop j in country n can be obtained by the product of land size in country n, the share
of land assigned to crop j, and the average revenue conditional on the selection of crop j in country
n. The country- and crop-level optimal revenue Ψnj

t is then given by:

Ψnj
t = E

[
ψnj

t (ω)
∣∣∣∣ Rnj

t A
nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
πnj

t H
n
t

= (Rnj
t A

nj
t )θ(Φn

t )1−θ

(
Hn

t

γnj

)
.

(15)

Then, the optimal quantity of crop j produced in country n is simply obtained by qnj
t =

(
Ψnj

t /p
nj
t

)
.

Furthermore, the aggregate country-level optimal revenue from crop production, denoted as Ψn
t , can
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be characterized as:

Ψn
t =

J∑
j=1

Ψnj
t = Φn

t H
n
t

J∑
j=1

(
πnj

t

γnj

)
. (16)

Optimal Input Demands — Optimal demands for labor and intermediate inputs can be derived
with an approach similar to that employed for optimal crop revenue. Let us denote ℓnj

t (ω) and
mnj

t (ω) as the optimal input demand per unit of land of a given plot ω for labor and intermediate
input, respectively. The country- and crop-level input demand for the production of crop j is the
product of the land size of each country, the fraction of land allocated to the crop j, and the average
input demand conditional on crop j being the rent-maximizing crop among all crop varieties:

ℓnj
t = E

[
ℓnj

t (ω)
∣∣∣∣ Rnj

t A
nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
πnj

t H
n
t =

(
αnj

wn A
t

)
Ψnj

t

mnj
t = E

[
mnj

t (ω)
∣∣∣∣ Rnj

t A
nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
πnj

t H
n
t =

(
ρnj

zn
t

)
Ψnj

t .

(17)

The equations above suggest that the input cost share equals the country- and crop-level revenue
multiplied by the factor intensity, a standard outcome of Cobb-Douglas technology. Additionally,
the country-level aggregate input demands for crop production can be derived as follows:

ℓn A
t =

J∑
j=1

ℓnj
t = ᾱn

t

wn A
t

Ψn
t and mn

t =
J∑

j=1
mnj

t = ρ̄n
t

zn
t

Ψn
t , (18)

where ᾱn
t = ∑J

j=1 χ
nj
t α

nj and ρ̄n
t = ∑J

j=1 χ
nj
t ρ

nj are the weighted averages of factor intensities for
labor and intermediate inputs, respectively, with the weight, χnj

t , being the revenue share of crop
j. This result suggests that the country-level input cost share equals the weighted factor intensity,
similar to the result found at the country- and crop-level input cost shares.

3.7 Non-agricultural Sector

To focus on crop-level agricultural production, the non-agricultural good is modeled with a par-
simonious assumption. The non-agricultural product is produced with labor and structure under
constant returns to scale technology, described as follows:

qn0
t = An M

t (ℓn M
t )ξn(Sn

t )1−ξn

, (19)

where ℓn M
t is the labor input, Sn

t is the structure input (non-accumulating capital). Here, An M
t >

0 is an exogenous total factor productivity (TFP) of the non-agricultural sector and ξn ∈ (0, 1)
represents the labor intensity in non-agricultural sector production. Under perfect competition, the
returns to labor and structure inputs in non-agricultural goods production are respectively given by:

wn M
t = An M

t ξn(ℓn M
t )ξn−1(Sn

t )1−ξn

and ιnt = An M
t (1 − ξn)(ℓn M

t )ξn(Sn
t )−ξn

. (20)
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3.8 Income Transfers and Budget Constraint

To maintain the model’s tractability regarding labor mobility, I introduce the assumption of income
transfers from local governments to households, similar to Redding (2016).11 Local governments,
which own land, intermediate inputs, and structure inputs, evenly redistribute rental revenues from
land and intermediate inputs to households working in the agricultural sector. Similarly, the local
governments evenly distribute rental revenues from structure inputs to households working in the
non-agricultural sector. Perfect competition and zero equilibrium profits imply that all revenues
from the agricultural and non-agricultural sector are paid to their factors of production, respectively.
With the income transfer assumptions, the total income of households in the agricultural sector
simply reduces to the revenue of agricultural production per worker, while the total income of
households in the non-agricultural sector equates to the revenue of non-agricultural production per
worker.

En A
t =

(
Ψn

t

Ln A
t

)
and En A

t =
(
qn0

Ln M
t

)
. (21)

3.9 Market Clearing

Market clearing for crop products j ∈ J implies that the production of good j in country n equals
the total consumption of that good in all countries, accounting for trade costs τn,m,j

t :

qnj
t =

∑
m∈N

τn,m,j
t cn,m,j

t , (22)

where cn,m,j
t = ∑

s∈S c
n,ms,j
t Lms

t is the total consumption of good j in country m, imported from
country n. Input markets are also cleared, ensuring that labor demand and supply are equalized in
each country-sector pair of labor markets, as well as for intermediate inputs at the country level.

Lns
t = ℓns

t and Mn
t = mn

t . (23)

3.10 Competitive Equilibrium

The competitive equilibrium of the economy can be defined following Caliendo et al. (2019, 2021)
with a group of state variables that describe the economy. The fundamental variables, or exogenous
state variables, include productivities At = {Bn

t , A
nj
t , A

n M
t }n∈N ,j∈J , bilateral migration costs ζ =

{ζns,mz}n,m∈N ,s,z∈S , bilateral trade costs τt = {τm,n,j
t }m∈N ,n∈N ,j∈J , structure endowment St =

{Sn
t }n∈N , land endowment Ht = {Hn

t }n∈N , and intermediate input endowment Mt = {Mn
t }n∈N .

The set of time-varying fundamental variables is denoted by Θt ≡ {At, τt, St, Ht,Mt}, and the
time-invariant fundamental variable is denoted by Θ̄ ≡ {ζ}. The endogenous state variable is the
population in the labor market for all country-sector pairs, Lt = {Lns

t }n∈N ,s∈S .
11Tracking individual wealth poses considerable challenges in the presence of labor mobility. Consequently, prior

studies have proposed several approaches: (1) allowing redistribution of rental revenues from local governments to its
local agents, (2) constructing a global portfolio that aggregates rental revenues from the global economy and redis-
tribute to local agents by giving shares, and (3) allowing local immobile factor owners. For a detailed exploration of
distributional assumptions regarding rental revenues, see e.g., Redding and Rossi-Hansberg (2017).
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Definition 3.1 (Temporary equilibrium). Given (Θt, Θ̄, Lt), a temporary equilibrium of the econ-
omy is a set of variables Tt(Θt, Θ̄, Lt) ≡ {ct, qt, πt, pt, ut, Xt, wt, zt, ιt}, where ct = {cm,ns,j

t }m,n∈N ,s∈S,j∈J ,
qt = {qnj

t }n∈N ,j∈J , πt = {πnj
t }n∈N ,j∈J , pt = {pnj

t }n∈N ,j∈J , ut = {uns
t }n∈N ,s∈S ,Xt = {Xn,m,j

t }n,m∈N ,j∈J ,
wt = {wns

t }n∈N ,s∈S , zt = {zn
t }n∈N , and ιt = {ιnt }n∈N that satisfy the optimality conditions for (a)

household’s utility maximization problem in equation (2)-(5), and (21); (b) farmer’s profit maxi-
mization problem in equation (12)-(18); (c) firm’s profit maximization problem in equation (19)-
(20); (d) and the market clearing condition defined in equation (22) and (23) of the static problem
for each time t.

Definition 3.2 (Sequential equilibrium). Given (L0, {Θt}∞
t=0, Θ̄), a sequential equilibrium is a

sequence of variables {Lt, µt, Vt, Tt(Θt, Θ̄, Lt)}∞
t=0, where µt = {µns,mz

t }n,m∈N ,s,z∈S and Vt =
{V ns

t }n∈N ,s∈S , such that the household dynamic migration problem in equations (7)-(9) is satisfied.

4 Solving the Equilibrium

Developing a global-scale agricultural production model poses challenges in terms of both data
availability and computational capacity. A key breakthrough is the application of dynamic hat
algebra approach introduced in Caliendo et al. (2019), which significantly reduces the computa-
tional burden to solve the multi-region dynamic optimization problem and the number of funda-
mental variables to be estimated.12 With dynamic hat algebra, solving the model involves com-
puting relative changes between time t and t + 1, denoting variables in time differences (ratios) as
ẋt+1 = (xt+1/xt) for any variable xt. Suppose an initial allocation of the economy is observed and
information on the future sequence of changes in the time-varying fundamental variables {Θ̇t}∞

t=1

is provided. The economy at t = 0 does not need to be on a steady state but it is assumed that
the economy is transitioning toward the steady state. To ensure that the model can reach a steady
state rather than exploding or shrinking, it is further assumed that the sequence of time differences
in the fundamental variables converges to 1 in the long run, i.e., limt→∞ Θ̇t = 1, and that the pop-
ulation growth rate eventually becomes zero, i.e., limt→∞{gn

t }n∈N = 0. To simplify the notation
in the following propositions, let us define the consumption shares as snj

t = (pnj
t c

ns,j
t /P n

t c
ns,A
t )

and smnj
t = (pm,n,j

t cm,ns,j
t /pnj

t c
ns,j
t ), respectively, and denote the set of consumption shares as

st = {snj
t , s

mnj
t }m,n∈N ,j∈J . Then Proposition 1 and 2 together characterize the sequential equilib-

rium of the model.

Proposition 1 (Solution to the Temporary Equilibrium). Given the allocation of temporary equi-
librium {πt, st, Lt, Xt} and time differences {L̇t+1, Θ̇t+1}, the solution to the temporary equilib-
rium at time t+ 1 solves the following set of equations:
1) Aggregate-level demand:

Ċns
t+1 =

(
ċns,A

t+1

)ϕn (
ċns,M

t+1

)1−ϕn

(24)

12Exact hat algebra, initially introduced in a static trade model by Dekle et al. (2007, 2008), was later extended to a
dynamic setting by Caliendo et al. (2019) incorporating labor mobility. For application of dynamic hat algebra in other
models in the recent literature, see e.g., Caliendo et al. (2019, 2021) and Kleinman et al. (2023).
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ċns,A
t+1 = Ėns

t+1

Ṗ n
t+1

and ċns,M
t+1 = Ėns

t+1 (25)

2) Crop-level demand:

ċns,j
t+1 =

(
Ṗ nj

t+1

Ṗ n
t+1

)−κ

ċns,A
t+1 , for j ∈ J (26)

Ṗ n
t+1 =

∑
j∈J c

snj
t (Ṗ nj

t+1)1−κ

1/(1−κ)

(27)

snj
t+1 = snj

t

(
Ṗ nj

t+1

Ṗ n
t+1

)1−κ

(28)

3) Crop- and origin-level demand:

ċm,ns,j
t+1 =

(
τ̇m,n,j

t+1 ṗmj
t+1

Ṗ nj
t+1

)−δ

ċns,j
t+1 , for j ∈ J (29)

Ṗ nj
t+1 =

( ∑
m∈N

smnj
t (τ̇m,n,j

t+1 ṗmj
t+1)1−δ

)1/(1−δ)

(30)

smnj
t+1 = smnj

t

(
τ̇m,n,j

t+1 ṗmj
t+1

Ṗ nj
t+1

)1−δ

(31)

4) Crop production:

Ṙnj
t+1 =

(
ṗnj

t+1Ḃ
n
t+1(ẇn A

t+1)−αnj (żn
t+1)−ρnj

)1/γnj

(32)

πnj
t+1 = πnj

t (Ṙnj
t+1Ȧ

nj
t+1)θ∑J

k=1 π
nk
t (Ṙnk

t+1Ȧ
nk
t+1)θ

(33)

Φ̇n
t+1 =

(
J∑

k=1
πnk

t (Ṙnk
t+1Ȧ

nk
t+1)θ

)1/θ

(34)

ẇn A
t+1 =

∑J
j=1 α

nj(γnj)−1πnj
t+1∑J

k=1 α
nk(γnk)−1πnk

t

(Φ̇n
t+1Ḣ

n
t+1

L̇n A
t+1

)

żn
t+1 =

∑J
j=1 ρ

nj(γnj)−1πnj
t+1∑J

k=1 ρ
nk(γnk)−1πnk

t

(Φ̇n
t+1Ḣ

n
t+1

Ṁn
t+1

) (35)

5) Budget constraint:

Ėns
t+1 =


∑J

j=1(γnj)−1πnj
t+1∑J

k=1(γnk)−1πnk
t

(Φ̇n
t+1Ḣ

n
t+1

L̇n A
t+1

)
, if s ∈ {A}

Ȧn M
t+1 (L̇n M

t+1 )ξn−1(Ṡn
t+1)1−ξn

, if s ∈ {M}
(36)

6) Crop market clearing:

∑
m∈N

Xn,m,j
t+1 = (Ṙnj

t+1Ȧ
nj
t+1)θ(Φ̇n

t+1)1−θḢn
t+1

( ∑
m̃∈N

Xn,m̃,j
t

)
, for j ∈ J (37)
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with Xn,m,j
t+1 =

(
τ̇n,m,j

t+1 ṗnj
t+1

Ṗmj
t+1

)1−δ (
Ṗmj

t+1

Ṗm
t+1

)1−κ (∑
s∈S Ė

ms
t+1L̇

ms
t+1E

ms
t Lms

t∑
s∈S E

ms
t Lms

t

)
Xn,m,j

t .

Proof. See Appendix B.1. ■

Proposition 2 (Solution to the Sequential Equilibrium). Given the initial allocation of the model,
(L0, π0, s0, µ−1, X0), and the converging sequence of exogenous time-varying fundamentals {Θ̇t}∞

t=1,
the solution to the sequential equilibrium, {Lt+1, µt+1, Vt+1}∞

t=0, solves the following set of equa-
tions:

µns,mz
t+1 = µns,mz

t (v̇mz
t+2)β/ν∑

m̃∈N

∑̃
z∈S

µns,m̃z̃
t (v̇m̃z̃

t+2)β/ν
(38)

Lns
t+1 =

∑
m∈N

∑
z∈S

µmz,ns
t (1 + gm

t )Lmz
t (39)

v̇ns
t+1 = u̇ns

t+1(L̇t+1, Θ̇t+1)
( ∑

m∈N

∑
z∈S

µns,mz
t (v̇mz

t+2)β/ν

)ν

, (40)

where vns
t+1 = exp

(
V ns

t+1

)
and uns

t+1 = exp
(
uns

t+1

)
, and uns

t+1(L̇t+1, Θ̇t+1) satisfies the temporary
equilibrium at each time t+ 1, for given {L̇t+1, Θ̇t+1}.

Proof. See Appendix B.2. ■

Proposition 1 and 2 together suggest that the solution to the dynamic general equilibrium model
can be obtained by solving a set of nonlinear equations without requiring the level values of the fun-
damental variables. This approach is particularly advantageous as it avoids the difficulties associ-
ated with accurately estimating the level of country- and crop-level land productivity (Anj

t ), as well
as the full matrix of bilateral migration (ζns,mz) and trade costs (τn,m,j

t ), which is quite challenging
given current data limitations in country-level studies as in this paper. Instead, the model solu-
tion makes use of information on initial allocation of migration flows (µns,mz

−1 ) and future changes
in time-varying fundamental variables ({Θ̇t+1}∞

t=0). The model can be used to simulate the econ-
omy’s transition path toward steady state equilibrium when the global agricultural production is
facing climate change shocks, which potentially affects both land productivities and size of harvest
areas through changes in multi-cropping practices.

While solving the equilibrium using dynamic hat algebra offers great advantages for spatial
models with high dimensionality across both space and time, some limitations of this approach
needs to be acknowledged. First, because the equilibrium solution for each time period depends
on the values from the preceding period, the method struggles to account for situations where a
previously zero value becomes positive in the subsequent period. This limitation could restrict
the model’s ability to accurately capture crop and migration choices. For instance, if a country
allocates no land to a particular crop in the initial period, the equilibrium solution does not allow
for any future allocation to that crop after climate change. Similarly, if there are no migration flows
between certain labor markets in the initial period, the model does not permit new migration flows
to emerge between these markets in subsequent periods. This could lead to an underestimation of
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the role of crop switching or labor mobility in the equilibrium solution. However, estimating the
exact barriers to adopting new crops or entering new labor markets is inherently challenging when
observed land allocations or migration flows are at zero. Therefore, the solution obtained using
dynamic hat algebra should be interpreted as capturing intensive margins—non-zero adjustments
in cropland shares and migration flows—and extensive margins from non-zeros to zeros13 but not
extensive margins involving shifts from zero to non-zero cropland shares and migration flows.

5 Bringing Model to Data

This section describes how the model is matched with data to evaluate the impact of climate change
on agricultural crop production. The model is quantified for 10 major crops–rice, maize, wheat,
potato and sweet potato, sugarcane, soybeans, tomatoes, oil palm, cassava, and bananas– and 60
regions, covering 145 countries around the world.14 The initial year is set to 2020, and the model
is solved with 5-year step sizes. While the goal of the model is to evaluate the impact of climate
change by 2100, the time horizon extends to 2400 to allow sufficient time for numerical conver-
gence of the sequential equilibrium. Exogenous climate change shocks on agricultural production,
TFP growth in both the agricultural and non-agricultural sectors, and population growth are ap-
plied through the end of the century (2025–2100), with no further shocks assumed thereafter. The
solution algorithm is presented in the Appendix D.1.

5.1 Data

This study combines multiple data sources. The key spatial information regarding agricultural
production is obtained from the GAEZ version 4 dataset provided by FAO. This dataset covers pro-
jections on the agro-climatic potential yield and potential number of multicropping practices, along
with the current geographical distribution of irrigation availability for croplands. Other historical
data on agriculture sector is sourced from the Food and Agriculture Organization (FAO) dataset,
including variables such as production quantity, harvest area, bilateral trade flows, and producer
prices at at both country and crop level. The future agricultural TFP (Ḃn

t+1) is assumed to grow
at an exogenous annual rate of 1.12%, following the recent estimates of global agricultural output
growth during 2011-2020 (Fuglie et al., 2024). Macroeconomic variables are collected from the
World Bank dataset, including sectoral GDP, sectoral employment, population, birth rates, death
rates, and inflation rates. Future TFP changes in the non-agricultural sector (Ȧn M

t+1 ), as well as pop-
ulation growth rates (gn

t ), are constructed based on projections from KC and Lutz (2017), assuming
SSP2 (Shared Socioeconomic Pathways) scenario.15. All monetary variables are deflated to 2020

13If a specific crop productivity shifts from non-zero to zero, i.e., Ȧnj
t = 0, the land allocation for that crop becomes

zero, as implied in equation (33).
14For list of crops and countries, see Table 9 and 10 in the Appendix C.
15Assuming an exogenous population path following SSP2, the TFP growth rate is constructed to capture the pro-

jected trajectory of GDP growth under SSP2. In this scenario, projected future economic patterns remain largely
consistent with historical trends, with developing countries experiencing higher economic growth rates and developed
economies exhibiting lower growth rates.
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USD.

5.2 Climate Change Shocks

In this paper, the climate change shock to the agricultural sector is considered in two dimensions:
land productivity and multiple cropping (or multicropping). This subsection describes how the
exogenous climate change shocks to agricultural production are introduced into the model quantifi-
cation.

Land Productivity — Previous studies most closely related to this paper—Costinot et al. (2016)
and Gouel and Laborde (2021)—assume a Leontief production technology and directly map the
agro-climatic potential yield (Anj

t ) from the GAEZ dataset as total factor productivity in their mod-
els. Although the Leontief assumption allows total factor productivity to be conveniently inter-
preted as yield, this approach introduces two potential biases. First, the agro-climatic potential
yield from the GAEZ data only captures agro-climatic conditions under a high-input scenario,
without accounting for heterogeneity in realized yields across countries or crops due to cultural
or technological farming practices or limited access to resources. Consequently, the agro-climatic
potential yield can diverge significantly from realized yields, particularly in developing economies
with limited access to mechanized equipment and chemical inputs.16 Second, the potential yield
from the GAEZ data is measured as yield per harvest. Therefore, if the model relies on physical
land size, using the GAEZ yield directly as total factor productivity may severely bias production
quantities, especially in countries where multicropping is prevalent.

In this paper, the total factor productivity parameter Bn
t can be interpreted to absorb all the

non-climatic factors affecting yield, thereby leaving agro-climatic attributes only to the land pro-
ductivity (Anj

t ). Importantly, the dynamic hat algebra only exploits the relative changes over time,
without requiring the level of land productivity. I interpret that the GAEZ agro-climatic potential
yield exhibits a linear relationship with land productivity in the model, i.e., Anj

t = υnjAnj
t . Even

though the land productivity (Anj
t ) and non-climatic efficiencies (Bn

t ) are not directly observed, the
sequential equilibrium of the model can be solved with dynamic hat algebra by exploiting that fu-
ture changes in land productivity can be captured by future changes in agro-climatic potential yield,
i.e., Ȧnj

t+1 = Ȧnj
t+1. By conditioning on the observed quantities in the initial period, the model is

exactly matched with the observed quantities of production, consumption, and trade, and can eval-
uate changes in equilibrium resulting from productivity shocks from climate change. Specifically,
these productivity shocks are introduced by constructing an irrigation-adjusted potential yield at
the country level, with cubic interpolation applied to generate a full time path through 2100. See
appendix C.1 for details.

Multiple Cropping Capacity — Changes in multicropping potentials are closely related to the
effective size of harvested areas. For instance, if a field previously used for double cropping per
year becomes available only for single cropping, the effective harvest area is reduced to half of its

16On an additional note, GAEZ data also provides information on the ‘achievement ratio (actual/potential)’ for
yields.
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original size. Therefore, in the production function, the land size is measured in terms of harvested
areas rather than physical areas. I capture potential changes in the size of harvested areas (Ḣn

t+1) in
the model by exploiting the changes in (Ṅ n

t+1) from the GAEZ data. In other words, this approach
assumes that the size of harvested areas increases or decreases at the same ratio as the multicropping
potential changes. It should be noted that, similar to agro-climatic potential yield, the multicropping
potentials provided by GAEZ data represent the upper limit of multicropping practices. In reality,
observed multicropping practices may not fully reach this potential multicropping capacity. By
conditioning on the observed harvested areas for land input in the initial period, the model solution
therefore incorporates the realized multicropping practices of the base year, and integrates potential
changes in multicropping capacities thereafter. Similar to the potential yield variable, I construct an
irrigation-adjusted multicropping potential variable at the country level and use cubic interpolation
to generate a continuous time path by 2100.

5.3 Migration Flows

One of the key pieces of information required to solve the model is the initial allocation of migration
flows. Comprehensive data on international migration for all countries is limited. To the best of
the author’s knowledge, there is no dataset available that captures migration flows at both cross-
country and cross-sector levels. I construct an expanded migration flows matrix across countries
and sectors, through a migration flow decomposition based on the equation (9). Given the cross-
country migration flow estimates from Abel and Cohen (2019), I construct domestic sectoral flows
from agriculture to non-agriculture (or vice versa), such that domestic net sectoral flows exactly
captures observed changes in sectoral population over time, accounting for population growth rates.
Details on the migration flow decomposition are provided in the Appendix D.2. The resulting
matrix of expanded migration flows is constructed for the period 1990-2015, with 5-year intervals,
as it is in the country-level flows from Abel and Cohen (2019). With 60 countries and 2 sectors, the
expanded migration flow matrix comprises 14,400 elements.

Figure 3 summarizes the migration flow estimates expanded at the cross-country and sector
levels. Figure 3a shows the time trend of migration flow shares over the period 1990-2015, aggre-
gated at the global scale. Excluding migration flows staying in the same labor market, the largest
migration flow is domestic migration from agriculture to non-agriculture, ranging between 2.26%
and 4.76% across the period 1990-2015. All other labor market switching patterns are below the
1% level across all periods. Both Figure 3b and Figure 3c present net domestic flows across sec-
tors for the most recent period 2015-2019, with Figure 3b showing results aggregated across 18
subregions and Figure 3c detailing for 60 countries. The values in Figure 3b and 3c are the share
of net domestic migration flows out of total migration flows within each country (or subregion),
with positive values indicating net domestic flows from agriculture to non-agriculture, and negative
values indicating the reverse.

Most regions exhibit net domestic flows from agriculture to the non-agricultural sector, with
the highest flows observed in Southeastern Asia (4.5%) and Eastern Africa (3.3%). By country,
the largest share of net domestic flows are seen in Vietnam (11.39%), Bangladesh (5.60%), Laos
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(5.26%), Myanmar (5.17%). However, there are a few exceptions, with regions such as South-
ern Africa and South America experiencing the opposite trends. Peru (-6.70%) have the highest
domestic migration flows from agriculture to non-agriculture, followed by the Rest of Southern
Africa (NSAF2) (-5.2%) and the Rest of Northern Latin America (RNLA) (-3.43). These patterns
may reflect the middle-income trap and premature deindustrialization, characterized by stagnant
economic growth and a lack of structural transformation.17 In particular, countries such as Peru,
South Africa (part of NSFA2), and Equador (part of RNLA) are considered potentially experiencing
middle-income premature deindustrialization (Andreoni and Tregenna, 2021). The model simula-
tion takes the migration flows over 5-year periods 2015-2019 as the initial flows (µ−1) and projects
labor mobility thereafter.

5.4 Parameters

Preference Parameters — As the aggregate consumption is a Cobb-Douglas form, the preference
parameter for the agricultural consumption (ϕn) is directly constructed using the FAO data as the
consumption share on agricultural goods, based on the year 2020. The CES preference parameters
are adopted from Costinot et al. (2016), with an elasticity of substitution across origins, δ = 5.4,
and an elasticity of substitution across crops, κ = 2.82.

Agricultural Production Parameters — The factor intensities for crop production (αnj, ρnj, γnj)
are key parameters governing market adjustments in the agricultural sector. To calibrate the crop-
level production input factor intensities, I follow and adapt the approach in Sotelo (2020), exploiting
the relationship between land share and revenue share. Specifically, revenue share (χnj

t ) can be
expressed as a function of land share (πnj

t ) and land intensity (γnj) as follows:

χnj
t = (γnj)−1πnj

t∑J
k=1(γnk)−1πnk

t

(41)

The model implies that, for any country n, crops with systematically higher revenue share relative
to its land allocation share in equilibrium have lower land intensity, and vice versa. I assume that the
country- and crop-specific land intensity can be multiplicatively decomposed into country-specific
and crop-specific components, i.e., γnj = γnγj . Taking log of equation (41), it follows:

log
(
χnj

t

)
= log

(
πnj

t

)
+ log

(
(γj)−1

)
︸ ︷︷ ︸

Dj

+ log
(
(γn)−1

)
− log

(
J∑

k=1
(γnk)−1πnk

t

)
︸ ︷︷ ︸

Dn
t

(42)

17In advanced economies such as the United States and the European Union, the decline in manufacturing employ-
ment share has been a characteristic feature of the post-industrial phase of development and is considered a standard
economic growth pattern. However, similar trends are observed in some developing and low- or middle-income coun-
tries, even before they are considered to have reached their peak industrialization. Such decline in manufacturing
among developing economies has been characterized in the literature as ‘premature deindustrialization’ (Dasgupta and
Singh, 2006; Rodrik, 2016). Rodrik (2016) documents that since the 1980s, the manufacturing sector has contracted
in both employment share and real value added, particularly in Latin America and Sub-Saharan Africa. While prema-
ture deindustrialization is often associated with a direct transition from agriculture to the service sector, the migration
patterns observed here suggest that some countries may be undergoing a process of ‘reverse structural transformation.’
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Assuming the above relationship is observed with an error ϵnj
t , the following equation is considered

for regression:
log
(
χnj

t

)
= log

(
πnj

t

)
+Dj +Dn

t + ϵnj
t , (43)

where Dj denotes crop-specific dummies and Dn
t denotes country- and time-specific dummies.

Dropping a baseline crop in the regression, the coefficient bj for Dj captures the fixed effect of
crop j relative to the baseline crop. Then crop-specific component of land intensity γj can be
captured by:

γj = 1
exp(bj)γ

base, (44)

where γbase is a land intensity of the baseline crop. I set Potato and sweet potato (RT1) as the
baseline crop as it is the most widely grown crop across countries. I use FAO data on harvested
areas, production quantity, and trade unit price for the period 2000-2020 to construct panel data on
harvested land share and revenue share to run the regression. The regression result is presented in
Table 2. The coefficient of log

(
πnj

t

)
is obtained as 0.951, which is close to the model prediction of

1. Crop dummy coefficient bj greater than zero indicates that the crop is less land-intensive relative
to the base crop, while negative coefficient suggest higher land intensity, compared to the base crop.
All crop dummy coefficients are statistically significant, except for that of oil palm and sugar cane.

Ideally, the model could be calibrated using country- and crop-specific land intensities to cap-
ture both cross-country and cross-crop heterogeneity. However, due to data limitations, I assume
that factor intensities are the same across countries, i.e., γnj = γj .18 Farrokhi and Pellegrina (2023)
calibrates the factor intensities in crop production to be 0.206 for land, 0.207 for labor, and 0.587 for
intermediate inputs, for modern technology, but does not account for crop-specific heterogeneity.19

After estimating the crop specific coefficient bj , I normalize the revenue-weighted input share of
land to the aggregate level reported in Farrokhi and Pellegrina (2023), i.e., γ̄n = 0.206. Specifically,

γ̄n =
∑
j∈J

ojγnj =
∑
j∈J

ojγn 1
exp(bj)γ

base, (45)

where oj is the revenue share of crop j globally, for which I construct the ten-year average over the
2010–2020 period. Then crop-specific component of land intensity for the baseline crop is:

γbase =
∑

j∈J
αnj exp

(
−bj

)−1
γ̄n

γn
. (46)

18To the best of the author’s knowledge, no recent studies systematically estimate the land input cost share specifi-
cally for crop production across all countries worldwide. U.S. Department of Agriculture, Economic Research Service
(2023) provides input cost share estimates in agricultural production for most countries, but these estimates encom-
pass crop, livestock, and aquaculture sectors (Fuglie, 2015). In countries with significant reliance on aquaculture, for
example, the reported input cost shares may not accurately reflect the land input cost share for crop production.

19In Farrokhi and Pellegrina (2023), the land use data by crop is obtained from the GAEZ data as well, whose
field-level values are consistent with the country-level data in the FAO upon aggregation, and the unit is harvested
areas, not physical areas. Also, in Farrokhi and Pellegrina (2023), the use of intermediate inputs in modern technology
corresponds to the use of chemical fertilizer.
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Substituting the equation (44) and (46) into γnj = γnγj , the factor intensity of land for crop j is as
follows:

γnj = exp(−bj)∑
j∈J αnj exp(−bj) γ̄

n. (47)

After recovering land intensities (γnj), factor intensities for labor (αnj) and intermediate inputs
(ρnj) are calibrated such that the relative input share of labor to intermediate inputs matches the
ratio in Farrokhi and Pellegrina (2023), i.e., αnj/ρnj = 0.207/0.587, and factor intensities for all
inputs sum to 1.

The calibrated factor intensities for all 10 crops are displayed in Table 3. Crops such as toma-
toes and bananas exhibit relatively low land intensity, while cereal crops and staple grains, such as
maize, wheat, and soybeans, are relatively more land-intensive. Figure 4 displays the model fit of
the estimated land intensities for the targeted moment of equation (41). Without including any fixed
effects, the model predicted revenue share (χ̂nj

t ), given the estimated land intensities and observed
harvested share of land (πnj

t ), can explain approximately R2 = 86.77% of variation in the observed
revenue share, confirming that there exists large heterogeneity in land intensity across crops.

Lastly, the land allocation elasticity is assumed to be θ = 1.38 following estimates in Far-
rokhi and Pellegrina (2023), which also employs global crop production data. In other studies,
Sotelo (2020) estimates this parameter at θ = 1.658 using Peruvian data, and Costinot et al. (2016)
estimates this parameter at θ = 2.46.

Non-Agriculture Production Parameters — The labor intensity parameter for non-agricultural
production, ξn, is constructed using share of labor compensation in total value added, based on data
from the World Input-Output Database (WIOD) for the year 2014.

Migration Elasticity — Solving the sequential equilibrium requires migration elasticity (1/ν), a
parameter governing how much migration responds to the relative changes in lifetime expected
utilities—and ultimately real income—across labor markets. All other things being equal, the mi-
gration elasticity is expected to be larger over longer time intervals, as households are more likely
to adjust through labor reallocation over an extended period. In previous studies, Caliendo et al.
(2019) estimates migration elasticity using internal migration data from the US, finding ν = 5.34
for the quarterly interval and ν = 2.02 for the annual interval, and Caliendo et al. (2021) estimates
annual migration elasticity at ν = 2 using migration flows among countries within the EU. At the
same time, however, cross-country and cross-sector migration, as in this study, is likely to have
lower migration elasticity compared to within-country or intra-EU migration. In a related study,
Cruz (2023) estimates this elasticity at ν = 6.67, with quinquennial step size and its data covering
6 sectors and 287 regions around the world.

Following Artuç et al. (2010) and Caliendo et al. (2019), I estimate the migration elasticity
using the expanded migration flows data, based on the following equation:

1
β

log(µns,mz
t /µns,ns

t ) − log(µns,mz
t+1 /µmz,mz

t+1 ) = 1
ν

log
(
Emz

t+1/E
ns
t+1

)
+Dm,n

t + υt+1, (48)

where the coefficient of log
(
Emz

t+1/E
ns
t+1

)
captures the migration elasticity (1/ν), and Dn,m

t repre-
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sents the origin-destination-time fixed effects. For details of estimation, see Appendix D.3. Two
identification concerns arise here. The first, inherent to this structural estimation, is that the OLS
estimates 1/ν are likely to be biased if there exists any shocks at time t+1, contained in the residual,
affect both the income at time t+ 1 and the migration decision at time t. To address this, following
Artuç et al. (2010), I instrument log

(
Emz

t+1/E
ns
t+1

)
with log

(
Emz

t−1/E
ns
t−1

)
, given the assumption that

income at time t − 1 is uncorrelated with the contemporaneous shock at time t + 1. With this
identification strategy, the period available for estimation in the panel data reduces from 1990-2015
to 1995-2010, with 5-year intervals. The validity of this lagged instrumental variable, however,
can be violated if there exists serial correlations in the income variable and the residuals (Ahlfeldt
et al., 2020). The second concern relates to the migration flows data, as the country-sector level
migration flows data is constructed based on assumptions at the sectoral level (see Appendix D.2
for details). While this may introduce noise in the dependent variable, the measurement error does
not induce bias if the measurement error is independent of the regressors (Greene, 2017). Given
the inherent challenges in estimating migration elasticity for global migration flows, results should
be interpreted with caution.

Table 4 reports the estimated migration elasticity (1/ν) ranging from 0.118 to 0.281. Consis-
tent with findings in Artuç et al. (2010), the IV regression yields higher estimates than OLS. Mi-
gration elasticity is estimated using the full set of migration flows (column 1-2), and additionally
only for domestic migration flows (column 3-4).20 The migration elasticity for domestic migration
(ν = 3.564) is higher than that for the full dataset (ν = 7.864), suggesting greater responsiveness
of domestic sectoral migration compared to international migration flows. Given that population
changes are primarily driven by domestic sectoral migration, while international migration remains
relatively limited, a baseline value of ν = 4 is chosen for the analysis. Alternative values are
explored in the sensitivity analysis.

6 Results

6.1 Impact of Climate Change on the Agricultural Sector

Structural Transformation — The analysis begins by examining the labor market consequences,
with a particular focus on the share of agricultural employment, a key measure of structural trans-
formation. Figure 5a depicts the simulated time path of employment shares in the agriculture sec-
tor, aggregated at 18 sub-regions. The figure shows historical data for the period 1990–2020, with
model simulations extending beyond 2020. The model predicts a consistent and gradual decline
in agricultural employment shares across most regions, indicating a structural transformation from
agriculture to non-agriculture, driven by sectoral labor mobility. Notable declines in agricultural
employment are projected in regions such as Eastern and Middle Africa, and South-eastern Asia.
In contrast, Southern Africa and South America deviate from this pattern, with labor reallocating

20The entire pair of migration share data is constructed as 57,600 combinations: 60 countries × 60 countries × 2
sectors × 2 sectors × 4 periods. The domestic migration flows corresponds to the case with n = m.
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back to the agricultural sector, reflecting the trend of ‘reverse structural transformation’.21 These
results should be interpreted in light of the model being quantified conditional on the initial period
observations, specifically migration flows µns,mz

−1 defined over 2015-2019. Regions experiencing
a sharp decline in agricultural employment share during 2015-2019 implies that those regions ex-
hibit a large income gap between agricultural and non-agricultural sectors, combined with relatively
lower migration frictions, resulting in a strong force of labor reallocation continued in subsequent
periods. Conversely, in regions displaying the opposite trend of structural transformation in the
model simulation periods, this pattern is consistent with observed migration flows back into the
agricultural sector during the 2015–2019 period.

The structural model provides a framework to analyze how climate change shocks affect labor
markets within a general equilibrium context. Figure 5b illustrates the percentage point (p.p.)
change in the share of agricultural workers under a climate change shock relative to an economy
unaffected by such a shock, aggregated at the 18 sub-regional level. The change in the share
of agricultural employment ranges from a decline of −0.719 p.p. to an increase of +0.239 p.p.
by 2100. Notably, regions such as Northern Africa (−0.719 p.p.) and Western Africa (−0.239
p.p.) exhibit a lower agricultural employment share due to the climate change shock, suggesting
that structural transformation out of agriculture could be accelerated by negative income shocks in
these areas. Conversely, regions like Central Asia (+0.239 p.p.) and Southern Africa (+0.175 p.p.)
are projected to experience an increase in agricultural employment share under the same scenario,
implying that positive income shocks in the agricultural sector could slow the pace of structural
transformation.

Welfare Effects — The next step involves quantifying the welfare consequences of the climate
change shock on the agricultural sector. Following Caliendo et al. (2019), the consumption equiva-
lent variation is employed to measure welfare changes. At time t = 0, the consumption equivalent
variation in the labor market ns, Qns, is defined such that

Ṽ ns
0 − V ns

0 =
∞∑

t=0
βt log(Qns), (49)

where Ṽ ns
0 denotes the expected lifetime utility of an alternative or counterfactual scenario, and V ns

0

is that of the baseline scenario. Then consumption equivalent variation reduces to the following
expression22:

Ŵ ns = log(Qns) =
∞∑

t=1
βt log

(
Ĉns

t

(µ̂ns,ns
t )ν

)
, (50)

where Ĉns
t =

(
C̃ns

t /Cns
t

)
/
(
C̃ns

t−1/C
ns
t−1

)
and µ̂ns,ns

t = (µ̃ns,ns
t /µns,ns

t ) / (µ̃ns,ns
t−1 /µns,ns

t−1 ), with x̃

notation referring to the corresponding variables in the alternative scenarios. Given that the percent
change is a linear approximation of logarithmic difference for Qns ≃ 1, the welfare measure Ŵ ns

can be interpreted as percentage changes in consumption.

21Northern Africa also exhibits a slight increase in agricultural employment share, driven by aggregation at the
sub-regional level. At the country level, agricultural employment share declines over time.

22For derivation, refer to Appendix A.2 in Caliendo et al. (2019).
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Figure 6 presents the welfare effects of climate change under the RCP 8.5 scenario (HadGEM2-
ES) on workers in agricultural sector. Figure 6a shows the welfare effects of climate change under
RCP 8.5, relative to an economy without climate change shocks, using a benchmark model that
incorporates labor mobility. The global aggregate welfare effects of climate change on agricul-
tural workers is around 0.01%, calculated by weighting the agricultural workers across countries in
year 2020. While this aggregate figure might suggest limited overall harm to agricultural work-
ers globally, substantial spatial heterogeneity exists across countries, ranging from −1.23% to
+3.85%. Australia (−1.23%), Cambodia (−1.14%), and countries in northern Africa (−1.01%)
experience the most significant welfare losses, whereas Mongolia (+3.85%), Norway (+3.10%),
Canada (+2.16%), and Russia (+1.95%) see welfare gains from climate change. The welfare
effects for workers in the non-agricultural sector are relatively small compared to those in the agri-
cultural sector, as the share of agricultural consumption in income is low in most countries (see
Figure E.1 in the Appendix).

The evolving comparative advantage in crop production over time is reflected in the transition
of land share allocated for different crops, as depicted for major countries in Figure 7-9. Notable
shifts in land share are projected in some countries: In North America, the United States is expected
to increase its share dedicated to wheat, while reducing the land share for maize and soybeans. In
South America, both Brazil and Argentina are projected to allocate less land to soybeans, which
currently occupies the largest land share, while the land share devoted to maize expands over time.
Despite these adjustments, most countries in South America are projected to experience reduced
welfare due to climate change. In Europe, Ukraine, a major agricultural producer, is expected to
steadily increase its land share in wheat, reflecting a growing comparative advantage in wheat pro-
duction. In Asia and Oceania, a notable case is Australia, where land allocation remains relatively
stable, with over 90% of land dedicated to a single crop, wheat. This high degree of specialization,
coupled with declining wheat yields and limited multicropping capacity, suggests that Australia’s
agricultural production may face the most severe negative welfare effects, with limited room of
adaptation under the baseline scenario. High specialization in a single crop does not always lead to
negative welfare outcomes. For instance, Mongolia, which also dedicates over 90% of its land to
wheat, is expected to experience the greatest welfare gains among the countries studied.

The country-level welfare effects examined in this analysis are relatively modest compared
to findings in previous studies (Costinot et al., 2016; Gouel and Laborde, 2021). In these stud-
ies, welfare changes are reported as percentage of GDP by obtaining equivalent variation, ranging
between -49.07% to 1.43% (Costinot et al., 2016), and -14.59% to 15.76% (Gouel and Laborde,
2021). Several factors likely contribute to this discrepancy. First, this study quantifies welfare
effects within a dynamic framework, in which climate change shocks unfold incrementally in five-
year intervals, allowing gradual market adjustments through production, trade, and labor market
mechanisms. In contrast, previous studies evaluated climate change shocks within a static frame-
work, where a sudden productivity shock is introduced at the 2071-2100 (2080s) level. Notably,
labor market adjustments with bilateral migration frictions are explicitly modeled here, an aspect
abstracted from previous studies. Furthermore, while previous studies assume a Leontief produc-
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tion structure that precludes any substitution among inputs (land and labor), this study employs a
Cobb-Douglas production function that permits substitution among land, labor, and intermediate
inputs. Consequently, when land productivity is negatively affected from climate change, farmers
can adjust by increasing their use of labor or other intermediate inputs. With all market adjust-
ment mechanisms—production, trade, and labor reallocation—in place, the general equilibrium
effects of climate change on the agricultural sector can be more modest than previous studies have
indicated.

To examine the role of labor mobility under the climate change shocks, Figure 6b, displays the
welfare effects of climate change under RCP 8.5, as in the previous figure, but without allowing
labor mobility. Labor is assumed to remain fixed at its level of initial period across all countries
and sectors. A comparison between Figures 6a and 6b reveals that restricting labor mobility sig-
nificantly amplifies the welfare impact: countries experiencing worsening conditions under climate
change deteriorate significantly without mobility, while those benefiting from climate change see
markedly enhanced gains in the absence of mobility. Specifically, country-level welfare effects
ranges from -5.16% to +7.46% when labor mobility is not allowed. This outcome reflects house-
holds’ ability to respond to both positive and negative income shocks from climate change by
relocating to more attractive labor markets or away from less attractive ones. Without this adjust-
ment mechanism, welfare impacts are more pronounced. This result suggests that labor mobility
plays a crucial role in mitigating the adverse impacts of climate change and that abstracting from
labor market adjustments may lead to an overestimation of these impacts.

6.2 Policy Analysis

Migration Costs — The key parameters related to labor mobility are bilateral migration costs,
which encompass not only economic but also institutional, political, and cultural barriers. A useful
approach to analyzing implications of migration policy is to examine counterfactual scenarios on
different migration costs. In this analysis, I consider counterfactual scenarios where all or some
of the migration costs become infinitely high, thereby restricting labor mobility. Outcomes are
then compared between two economies with different migration costs, with all else held constant,
including the presence of climate change shocks. Welfare effects are again measured in terms of
consumption equivalent variation. Details on the derivation for counterfactual analysis are provided
in the Appendix B.3.

Before introducing the counterfactual results, it is useful to revisit the Bellman equation. Rear-
ranging the equation (6) and taking expectation over a vector ϵt, it follows

V ns
t = uns

t + βV ns
t+1 + Et

[
max

m∈N ,z∈S

{
βV mz

t+1 − βV ns
t+1 − ζns,mz + νϵmz

t

}]
︸ ︷︷ ︸

≡Ons
t

. (51)

The above equation shows that, expected lifetime utility of a household in labor market ns consists
of three components; current period utility (uns

t ), base value of staying the same labor market
(βV ns

t+1), and the value of moving to a potentially better labor market (Ons
t ). The last component
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has been called as the option value in the literature (Artuç et al., 2010). Assuming there is no cost
staying in the same labor market (ζns,ns = 0), it follows Ons

t ≥ 0, implying that the possibility of
labor mobility in future periods itself can generate welfare gains. However, the net welfare effect of
migration depends on both the second and third terms, as labor mobility can also alter the prospects
of all labor markets, including the current one.

The first counterfactual analysis examines the welfare effects of baseline labor mobility. This is
done by comparing an economy with baseline labor mobility—both cross-country and cross-sector
migration at the current level of migration costs—to an economy where labor mobility is entirely
restricted, i.e., ζns,mz → ∞ for all n, s,m, z. Figure 10a shows the welfare effects of labor mobility
for workers in agricultural sector, revealing a global aggregate welfare effects of 14.24%. Substan-
tial welfare gains are projected for countries such as Vietnam (42.65%), Philippines (30.71%), and
China (26.42%), which are countries with relatively high mobility flows out of the agricultural
sector. Conversely, countries like Italy (-39.05%), Peru (-35.14%), and Southern Africa (-33.61%)
experience welfare losses among agricultural workers as a result of labor mobility. The welfare
outcomes are closely related to the model’s assumption that income is defined as sector-specific
GDP per capita, with decreasing returns to labor in agricultural production. In labor markets ex-
periencing net outflows (encompassing both domestic and international flows), the base value of
remaining in the same market increases as the population in that market declines over time, thereby
increasing per capita income; the opposite holds for markets with net inflows. Notably, agricultural
workers in countries such as the US, Canada, and Russia experience welfare losses due to labor
mobility, despite the agricultural sector in these countries facing domestic net outflows in the initial
period. This occurs because the positive income shock from climate change attracts more labor
into the agricultural sector over time, resulting in lower per capita income for agricultural workers
in these countries compared to an economy without mobility.

The second counterfactual analysis focuses on the welfare effects of domestic structural trans-
formation. In this scenario, cross-country migration is prohibited, but households can still migrate
between sectors domestically. Specifically, domestic sectoral migration costs remain at their cur-
rent levels, while cross-country migration costs becomes infinitely high, i.e., ζns,mz → ∞ for all
n ̸= m, due to a sudden shock in the initial period (t = 0). Welfare effects are then similarly
examined by comparing an economy with only domestic sectoral labor mobility to one where labor
mobility is entirely restricted. Figure 10b shows the welfare effects of allowing domestic labor
mobility for agricultural workers are close to the results found in Figure 10a. This outcome aligns
with the empirical observation in Figure 3a that large share of labor mobility occurs through do-
mestic sectoral switches rather than cross-country migration. Comparison of welfare effects under
baseline mobility and domestic-only mobility is displayed in Figure E.2 in the appendix. Although
the welfare effects are highly correlated across the two scenarios, they are slightly higher under
the domestic-only mobility scenario for many countries. This result may seem counterintuitive, as
restricting mobility options is likely to reduce the option value. This outcome, however, arises be-
cause domestic-only mobility scenario can increase the base value of remaining in the same labor
market, leading to higher net welfare effects. Consider a country with net domestic outflows in
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the agricultural sector—without the possibility of international inflows, the agricultural sector pop-
ulation under domestic-only mobility scenario can fall below the levels projected under baseline
mobility scenario. Consequently, per capita income for agricultural workers could be higher under
the domestic-only mobility scenario in equilibrium, raising the base value of remaining in the same
labor market despite restricted mobility options.

Different model assumptions about income redistribution may affect the quantitative magnitude
of welfare outcomes, but the primary insight from this policy analysis is that labor mobility has a
substantial welfare impact for workers in agricultural sector—potentially even exceeding the wel-
fare impact of climate change shocks (RCP8.5) itself in many countries. Furthermore, the welfare
gains from labor mobility are driven largely by domestic sectoral mobility rather than international
migration. This does not mean that international mobility is not effective in improving welfare
consequences; rather, it reflects that, given the higher costs associated with international migration
compared to domestic cross-sector mobility, the option value of switching sectors can yield much
larger welfare gains than the option value of moving across countries. The large welfare gains from
labor mobility also reflect substantial income gap between the agricultural and non-agricultural
sectors, suggesting that addressing the systematic and prevalent sectoral income inequality around
the world remains an important task, alongside efforts to tackle climate change. Facilitating labor
mobility, particularly through structural transformations away from agriculture toward other sec-
tors, appears crucial in mitigating the welfare impacts of climate change shocks for those working
in the agricultural sector. This finding aligns with recent studies, such as Cruz and Rossi-Hansberg
(2023), in highlighting labor adjustment as a critical adaptation mechanism against climate change,
while offering a complementary perspective that emphasizes the essential role of structural trans-
formation over cross-country geographical migration.

6.3 Sensitivity Analysis

Other Climate Scenarios — While the model simulation uses the RCP 8.5 scenario from HadGEM2-
ES as the baseline, I also conduct welfare analysis with other climate scenarios. Five climate
scenarios are available for RCP 4.5 and RCP 8.5, respectively, from the following models: GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. The welfare
effects of these climate scenarios are provided in the Appendix E.2. Overall, the welfare effects are
similar across different climate models, although a few countries, such as Australia, exhibit some-
what varying welfare predictions across scenarios. Additionally, the welfare effects are analyzed
separately for yield shocks and multicropping shocks under the baseline RCP 8.5 (HadGEM2-ES)
scenario to assess the individual contribution of each shock. See Table 8 for details.

Behavioral Parameters — The sensitivity of the quantitative results to the migration elasticity
parameter is examined in Appendix E.3. Welfare outcomes are compared across different migration
elasticity values, showing qualitatively similar patterns. A higher ν leads to labor reallocation less
responsive to income shocks, resulting in a slightly more amplified distribution of welfare effects.
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7 Conclusion

This paper evaluates the impact of climate change shocks on agricultural production by quantifying
a dynamic spatial general equilibrium model that incorporates three key market adjustment mech-
anisms: farmers’ crop choice, international trade, and forward-looking dynamic labor reallocation.
Findings indicate that, under RCP 8.5, the overall global welfare effect on agricultural workers
may remain modest; however, welfare effects vary substantially across countries. The results also
highlight labor mobility as a crucial adjustment mechanism in response to climate change shocks.
When labor mobility is restricted, the welfare impacts of climate change are amplified in both pos-
itive and negative directions. This study’s emphasis on labor reallocation complements previous
research highlighting the role of market adjustments through crop choice and international trade
against climate change shocks (Costinot et al., 2016; Gouel and Laborde, 2021). Finally, counter-
factual analysis with migration costs shows that labor mobility brings welfare gains for agricultural
workers in most countries. Given current migration frictions, these welfare gains are largely driven
by domestic sectoral labor mobility rather than international mobility. This finding suggests that fa-
cilitating structural transformation out of agriculture in developing economies—many of which are
likely to experience negative income shocks in the agricultural sector—could serve as an important
mitigation strategy against potential adverse impacts of climate change.

This study primarily focuses on the effects of climate change shocks on agriculture, while
abstracting from certain factors that could be explored in future work. For instance, it does not
account for land use changes across sectors, such as conversions between forests, croplands, and
urban areas, which could be integrated into future research. Additionally, the climate change shocks
derived from GAEZ data capture average trends in agro-climatic conditions but do not incorporate
volatility from extreme events such as floods, typhoons, and other natural disasters. The findings
of this study indeed suggest that, while the impact of climate change could remain within a modest
range with gradual shifts in agro-climatic conditions and full market adjustments in production,
trade, and labor reallocation, the emerging priority could be addressing the heightened risks as-
sociated with extreme weather events in agricultural sector. Modeling these events would involve
introducing uncertainty, similar to the stochastic approaches as in Cai et al. (2017) and Cai and
Lontzek (2019), though this may present challenges such as the ‘curse of dimensionality’ in com-
plex multi-country, multi-sector models. Extending this dynamic spatial framework to incorporate
these and other economic dimensions could offer valuable insights in future studies.
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Burzyński, M., Deuster, C., Docquier, F., and de Melo, J. (2022). Climate Change, Inequality, and
Human Migration. Journal of the European Economic Association, 20(3):1145–1197.

Cai, Y., Judd, K. L., and Lontzek, T. S. (2017). The social cost of carbon with economic and climate
risks. Hoover Economics Working Paper 18113, Hoover Economics.

Cai, Y. and Lontzek, T. S. (2019). The social cost of carbon with economic and climate risks.
Journal of Political Economy, 127(6):2684–2734.

Caliendo, L., Dvorkin, M., and Parro, F. (2019). Trade and Labor Market Dynamics: General
Equilibrium Analysis of the China Trade Shock. Econometrica, 87(3):741–835.

Caliendo, L., Opromolla, L. D., Parro, F., and Sforza, A. (2021). Goods and Factor Market In-
tegration: A Quantitative Assessment of the EU Enlargement. Journal of Political Economy,
129(12):3491–3545.

Cattaneo, C. and Peri, G. (2016). The migration response to increasing temperatures. Journal of
Development Economics, 122:127–146.

Conte, B. (2022). Climate Change and Migration: The Case of Africa. Technical Report 4226415,
CESifo Working Paper No. 9948, Rochester, NY.

Conte, B., Desmet, K., Nagy, D. K., and Rossi-Hansberg, E. (2021). Local sectoral specialization
in a warming world. Journal of economic geography, 21(4):493–530.

Costinot, A., Donaldson, D., and Smith, C. (2016). Evolving Comparative Advantage and the
Impact of Climate Change in Agricultural Markets : Evidence from 1.7 Million Fields around
the World. Journal of Political Economy, 124(1):205–248.

33



Draft version: February 19, 2025

Cruz, J. L. (2023). Global warming and labor market reallocation. unpunlished manuscript.

Cruz, J.-L. and Rossi-Hansberg, E. (2023). The economic geography of global warming. The
Review of Economic Studies, 91(2):899–939.

Dasgupta, S. and Singh, A. (2006). Manufacturing, services and premature deindustrialization in
developing countries. Technical Report 049, Helsinki, Finland.

Dekle, R., Eaton, J., and Kortum, S. (2007). Unbalanced Trade. American Economic Review,
97(2):351–355.

Dekle, R., Eaton, J., and Kortum, S. (2008). Global Rebalancing with Gravity: Measuring the
Burden of Adjustment. IMF Staff Papers, 55(3):511–540.

Desmet, K., Kopp, R. E., Kulp, S. A., Nagy, D. K., Oppenheimer, M., Rossi-Hansberg, E., and
Strauss, B. H. (2021). Evaluating the Economic Cost of Coastal Flooding. American Economic
Journal: Macroeconomics, 13(2):444–486.

Desmet, K., Nagy, D. K., and Rossi-Hansberg, E. (2018). The Geography of Development. Journal
of Political Economy, 126(3):903–983.

Desmet, K. and Rossi-Hansberg, E. (2015). On the spatial economic impact of global warming.
Journal of Urban Economics, 88:16–37.

Eaton, J. and Kortum, S. (2002). Technology, Geography, and Trade. Econometrica, 70(5):1741–
1779.

Farrokhi, F. and Pellegrina, H. S. (2023). Trade, technology, and agricultural productivity. Journal
of Political Economy, 131(9):2509–2555.

Fischer, G., Nachtergaele, F., van Velthuizen, H., Chiozza, F., Franceschini, G., Henry, M., Mu-
choney, D., and Tramberend, S. (2021). Global Agro-Ecological Zones v4 – Model documenta-
tion. FAO, Rome, Italy.

Fuglie, K. (2015). Accounting for growth in global agriculture. Bio-based and Applied Economics,
4(3):201–234.

Fuglie, K. O., Morgan, S., Jelliffe, J., and United States. Department of Agriculture. Economic
Research Service, i. b. (2024). World agricultural production, resource use, and productivity,
1961-2020.

Gollin, D. (2023). Agricultural productivity and structural transformation: evidence and questions
for african development. Oxford Development Studies, 51(4):375–396.

Gollin, D., Lagakos, D., and Waugh, M. E. (2014). The Agricultural Productivity Gap. The Quar-
terly Journal of Economics, 129(2):939–994.

Gouel, C. and Laborde, D. (2021). The crucial role of domestic and international market-
mediated adaptation to climate change. Journal of Environmental Economics and Management,
106:102408.

Greene, W. H. (2017). Econometric Analysis. Pearson, Upper Saddle River, NJ, 8th edition. ©
2018.

34



Draft version: February 19, 2025

Herrendorf, B., Rogerson, R., and Valentinyi, A. (2013). Two perspectives on preferences and
structural transformation. American Economic Review, 103(7):2752–89.

Herrendorf, B., Rogerson, R., and Ákos Valentinyi (2014). Chapter 6 - growth and structural trans-
formation. In Aghion, P. and Durlauf, S. N., editors, Handbook of Economic Growth, volume 2
of Handbook of Economic Growth, pages 855–941. Elsevier.

Herrendorf, B. and Schoellman, T. (2018). Wages, human capital, and barriers to structural trans-
formation. American Economic Journal: Macroeconomics, 10(2):1–23.

Imbert, C. and Papp, J. (2020). Costs and benefits of rural-urban migration: Evidence from India.
Journal of Development Economics, 146:102473.

KC, S. and Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population
scenarios by age, sex and level of education for all countries to 2100. Global Environmental
Change, 42:181–192.

Kleinman, B., Liu, E., and Redding, S. J. (2023). Dynamic spatial general equilibrium. Economet-
rica, 91(2):385–424.

Lagakos, D., Mobarak, A. M., and Waugh, M. E. (2023). The Welfare Effects of Encouraging
Rural–Urban Migration. Econometrica, 91(3):803–837.

Matsuyama, K. (1992). Agricultural productivity, comparative advantage, and economic growth.
Journal of Economic Theory, 58(2):317–334.

Munshi, K. and Rosenzweig, M. (2016). Networks and misallocation: Insurance, migration, and
the rural-urban wage gap. American Economic Review, 106(1):46–98.

Nath, I. B. (2023). The Food Problem and the Aggregate Productivity Consequences of Climate
Change. Working Paper 27297, Working Paper.

Ohio Supercomputer Center (1987). Ohio supercomputer center.

Pellegrina, H. S. (2022). Trade, productivity, and the spatial organization of agriculture: Evidence
from Brazil. Journal of Development Economics, 156:102816.

Peri, G. and Sasahara, A. (2019). The Impact of Global Warming on Rural-Urban Migrations:
Evidence from Global Big Data.

Redding, S. J. (2016). Goods trade, factor mobility and welfare. Journal of International Eco-
nomics, 101:148–167.

Redding, S. J. and Rossi-Hansberg, E. (2017). Quantitative spatial economics. Annual Review of
Economics, 9(Volume 9, 2017):21–58.

Restuccia, D., Yang, D. T., and Zhu, X. (2008). Agriculture and aggregate productivity: A quanti-
tative cross-country analysis. Journal of Monetary Economics, 55(2):234–250.

Rodrik, D. (2016). Premature deindustrialization. Journal of Economic Growth, 21(1):1–33.

Rudik, I., Lyn, G., Tan, W., and Ortiz-Bobea, A. (2022). The Economic Effects of Climate Change
in Dynamic Spatial Equilibrium. Conference papers.

35



Draft version: February 19, 2025

Solow, R. M. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal
of Economics, 70(1):65–94.

Sotelo, S. (2020). Domestic Trade Frictions and Agriculture. Journal of Political Economy,
128(7):2690–2738.

Swan, T. W. (1956). Economic growth and capital accumulation. Economic Record, 32(2):334–
361.

Tombe, T. (2015). The Missing Food Problem: Trade, Agriculture, and International Productivity
Differences. American Economic Journal: Macroeconomics, 7(3):226–258.

Tombe, T. and Zhu, X. (2019). Trade, migration, and productivity: A quantitative analysis of china.
American Economic Review, 109(5):1843–72.

U.S. Department of Agriculture, Economic Research Service (2023). International agricultural
productivity data product.

Vollrath, D. (2009). How important are dual economy effects for aggregate productivity? Journal
of Development Economics, 88(2):325–334.

Zappala, G. (2024). Estimating sectoral climate impactsin a global production network. Working
Paper.

36



Draft version: February 19, 2025

Figures

Figure 1: Climate Change Shocks on Agricultural Production under RCP 8.5

(a) Potential Yield Changes for the Highest Revenue Crops

(b) Potential Changes of the Multicropping Capacities

Notes: The above graphs illustrate the potential climate change shock on agricultural production under RCP 8.5
scenario. Figure 1a displays the potential yield changes by 2100 relative to 2020 for the highest-revenue crops in
each country or region. Figure 1b shows the potential multicropping capacity changes by 2100 relative to 2020.
For instance, 10% value means 10% increase in potential yield or multicropping capacity relative to the level of
2020. Both figures display the irrigation-adjusted values.
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Figure 2: Structural Transformation in Labor Markets

(a) Transition in Share of Agricultural Employment

(b) Income Gap and Structural Transformation

Notes: The above graphs together describe the empirical patterns of historical structural transformation around
the world. Figure 2a displays the transition of share of agricultural employment aggregated at the sub-regional
groups for the period 1990-2020. Figure 2b captures the cross-country relationship between the income gap
and the share of domestic net migration flows from agriculture to non-agricultural sector for the panel period
1990–2015, with 5-year intervals, after controlling for year and country fixed effects.
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Figure 3: Summary of Migration Flow Estimates

(a) Aggregate Global Trends over Time (b) Domestic Net Flows in 2015-2019

(c) Domestic Net Flows in 2015-2019 by Country

Notes: The above graphs summarize the expanded migration flow estimates. Figure 3a illustrates the percentage
of migration flows across countries and sectors over 1990-2015, aggregated at the global level. Both figure 3b
and figure 3c show the domestic net flows from agriculture to non-agriculture for the period 2015-2019, with
figure 3b presenting results aggregated at 18 subregions and figure 3c presenting for 60 countries.
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Figure 4: Fit of the Model–Factor Intensity of Land

Notes: The above figure depicts the fit of the model for factor intensity of land (γnj). The x-axis is the observed
revenue share (χnj

t ) and x-axis shows the predicted revenue share (χ̂nj
t ) from equation (41), given the estimated land

intensities and observed harvested share of land (πnj
t ). The regression employs country-level panel data of period

2000-2020. The 45-degree line is shown in red.
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Figure 5: Labor Market Effects under the Climate Change RCP 8.5

(a) Simulated Time Path of Agriculture Employment Share

(b) Effects of Climate Change RCP 8.5 on Agricultural Employment Share

Notes: The figure 5a illustrates the agricultural employment share aggregated at the sub-regional level under the
baseline scenario, assuming climate change scenario RCP8.5, population scenario SSP2, and an inverse migration
elasticity parameter ν = 4. The period from 1990 to 2020 represents the actual historical agricultural employment
share, while the post-2020 period shows simulation results. The figure 5b shows the percentage point change
in agricultural employment share under the climate change scenario RCP 8.5 relative to the economy without
climate change shock.
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Figure 6: The Welfare Effects of Climate Change Shock RCP8.5

(a) Welfare Effects under Labor Mobility

(b) Welfare Effects under No Labor Mobility

Notes: The above figures show the welfare impact of climate change RCP 8.5 scenario measured in the con-
sumption equivalent variation for workers in agriculture sector. Figure 6a shows the welfare impact of RCP 8.5
relative to no climate change scenario, when the model incorporates labor mobility. Figure 6b depicts the welfare
impact of RCP 8.5 relative to no climate change scenario, when the model does not incorporate labor mobility.
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Figure 7: Transition in Land Allocation Share - North and South America

Notes: The above figure shows the changes in land allocation shares for major countries under the baseline
climate change scenario RCP 8.5 (HadGEM2-ES). The x-axis shows year for the period 2020-2100, and the y-
axis represents the stacked percentage of land share for 10 crops. Crops are ordered such that one with the largest
land share in 2020 is represented in the lightest color, and those with smaller shares are depicted in progressively
darker colors.
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Figure 8: Transition in Land Allocation Share - Europe and Africa

Notes: The above figure shows the changes in land allocation shares for major countries under the baseline
climate change scenario RCP 8.5 (HadGEM2-ES). The x-axis shows year for the period 2020-2100, and the y-
axis represents the stacked percentage of land share for 10 crops. Crops are ordered such that one with the largest
land share in 2020 is represented in the lightest color, and those with smaller shares are depicted in progressively
darker colors.
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Figure 9: Transition in Land Allocation Share - Asia and Oceania

Notes: The above figure shows the changes in land allocation shares for major countries under the baseline
climate change scenario RCP 8.5 (HadGEM2-ES). The x-axis shows year for the period 2020-2100, and the y-
axis represents the stacked percentage of land share for 10 crops. Crops are ordered such that one with the largest
land share in 2020 is represented in the lightest color, and those with smaller shares are depicted in progressively
darker colors.
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Figure 10: The Welfare Effects of Migration Policies

(a) Effects of Labor Mobility across Countries and Sectors

(b) Effects of Domestic Labor Mobility across Sectors

Notes: The above figures show the welfare effects of labor mobility under the climate change RCP 8.5 scenario,
measured in the consumption equivalent variation as percentage changes, for the agricultural workers. Figure 10a
shows the welfare effects of labor mobility across both countries and sectors under the current level of migration
frictions, compared to the economy with no labor mobility. Figure 10b presents the welfare effects of labor
mobility under domestic sectoral mobility only, where domestic sectoral migration costs remain at the current
level, compared to an economy with no labor mobility.
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Tables

Table 1: Structural Model Parameters and Fundamental Variables

Parameter Name Value Target/Source

Preference

ϕn consumption share of agricultural goods · · · FAO

δ elasticity of substitution across origins 5.4 Costinot et al. (2016)

κ elasticity of substitution across crops 2.82 Costinot et al. (2016)

β utility discount rate (quinquennial) (0.96)5 Caliendo et al. (2019)

Production

αnj ,γnj ,γnj factor intensity for agriculture · · ·
Estimation - Eq. (41)

and Farrokhi and Pellegrina (2023)

θ land allocation elasticity 1.38 Farrokhi and Pellegrina (2023)

ξn labor intensity for non-agriculture · · · WIOD

Ȧnj
t+1 Time differences: land productivity · · · GAEZ

Ḣnj
t+1 Time differences: harvested areas · · · GAEZ

Ḃn
t+1 Time differences: TFP in agriculture 1.056 Fuglie et al. (2024)

Ȧn M
t+1 Time differences: TFP in non-agriculture · · · SSP2 (KC and Lutz, 2017)

Population Dynamics

ν inverse of migration elasticity 4.0 Estimation - equation (8)

gn
t population growth rate · · · SSP2 (KC and Lutz, 2017)

Notes: Exogenous shocks—including changes in land productivity, harvested areas, agricultural and non-
agricultural TFP, and population growth—are applied through 2100, after which they remain constant.
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Table 2: Estimation of Factor Intensity of Land

log
(
χnj

t

)
log
(
πnj

t

)
0.951∗∗∗

(0.025)
Crop Fixed Effects (bj)

- Bananas 0.522∗∗∗

(0.116)
- Cassava -0.363∗

(0.143)
- Maize -1.464∗∗∗

(0.108)
- Oil palm fruit -0.138

(0.243)
- Potato and sweet potato 0

(.)
- Rice -0.994∗∗∗

(0.094)
- Soybean -1.767∗∗∗

(0.085)
- Sugar cane 0.0440

(0.175)
- Tomatoes 1.381∗∗∗

(0.145)
- Wheat -1.840∗∗∗

(0.103)
Observations 9,425
Adj R-squared 0.904

Country-Year FE Yes

Notes: Standard errors in parenthesis. Significance levels are denoted as
***p<0.01, **p<0.05, and *p<0.1, respectively. The fixed effects are included
at the country-year level, and the error term is clustered at the country level. The
regression employs country-level panel data of period 2000-2020. The fixed effect
for ‘potato and sweet potato’ is dropped as the baseline crop.
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Table 3: Factor Intensity of Crop Production

Crop Name Labor (αnj) Intermediate (ρnj) Land (γnj)

Bananas 0.255 0.705 0.040
Cassava 0.240 0.664 0.096
Maize 0.189 0.522 0.289
Oil palm fruit 0.245 0.678 0.077
Potato and sweet potato 0.248 0.685 0.067
Rice 0.218 0.602 0.181
Soybeans 0.162 0.447 0.391
Sugar cane 0.249 0.687 0.064
Tomatoes 0.261 0.722 0.017
Wheat 0.154 0.425 0.421

Notes: The above table shows the crop-level factor intensities used in the model simulation.
The relative crop-level heterogeneity in land intensities are estimated targeting equation (41),
and are normalized such that the revenue-weighted input share of land matches with the input
share of land for modern technology in Farrokhi and Pellegrina (2023).
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Table 4: Estimation Result: Migration Elasticity

All Flows Domestic Flows

OLS IV OLS IV
(1) (2) (3) (4)

1/ν: migration elasticity 0.118∗∗∗ 0.127∗∗∗ 0.217∗∗∗ 0.281∗∗∗

(0.003) (0.003) (0.042) (0.043)

Kleibergen-Paap Wald rk F statistic 506,766.3 4,504.5
Observations 54,668 54,668 960 960

ν: inverse of migration elasticity 8.492 7.864 4.598 3.564

Origin-Destination-Year FE Yes Yes Yes Yes

Notes: Standard errors in parenthesis. Significance levels are denoted as ***p<0.01,
**p<0.05, and *p<0.1, respectively. The fixed effect is at origin country-destination country-
year level, and the error term is clustered at the origin country-destination country level.
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Appendix

A Proofs for the Model

A.1 Proof of Household Migration Problem

Proof. This section reintroduces the proof of the dynamic discrete choice problem of households in
Caliendo et al. (2019) for the integrity of the model proofs. The only difference from Caliendo et al.
(2019) is that I keep per period utility uns

t in the value function expression when using dynamic hat
algebra rather than using real wages.

Proof of Equation (7) — The Bellman equation of a household currently living in country n and
working in sector s at time t is given by:

vns
t = uns

t + max
m∈N ,z∈S

{
β Et(vmz

t+1) − ζns,mz + νϵmz
t

}
, (A.1)

where ϵmz
t is i.i.d. over individuals, countries, sectors, and time and is assumed to follow Type-I

Extreme Value distribution with mean zero. Specifically, the cumulative distribution function is
given by:

F (ϵ) = exp(− exp(−ϵ− ð)), (A.2)

where ð =
∫∞

−∞ x exp(−x exp(−x))dx. Its probability density function is f(ϵ) = ∂F (ϵ)/∂ϵ.
Let us define Ξns

t = Et

[
max

m∈N ,z∈S

{
β Et(vmz

t+1) − ζns,mz + νϵmz
t

}]
. The goal is to solve for

V ns
t ≡ Et(vns

t ) by obtaining Ξns
t . For mz to be the utility maximizing country-sector pair in the

period t+ 1, it must be:

βV m̃z̃
t+1 − ζns,m̃z̃ + νϵm̃z̃

t ≤ βV mz
t+1 − ζns,mz + νϵmz

t , (A.3)

for all other country-sector pair m̃z̃. The above expression is equivalent to the following:

ϵm̃z̃
t ≤

(
β(V mz

t+1 − V m̃z̃
t+1) − (ζns,mz − ζns,m̃z̃)

ν

)
+ ϵmz

t . (A.4)

Define ϵ̄mz,m̃z̃
t =

(
β(V mz

t+1−V m̃z̃
t+1)−(ζns,mz−ζns,m̃z̃)

ν

)
and obtain Pr

(
ϵm̃z̃

t ≤ ϵ̄mz,m̃z̃
t + ϵmz

t

)
= F (ϵ̄mz,m̃z̃

t +
ϵmz

t ). Then Ξns
t can be expressed as:

Ξns
t =

∑
m∈N

∑
z∈S

∫ ∞

−∞
(βV mz

t+1 − ζns,mz + νϵmz
t )f(ϵmz

t )
∏

m̃z̃ ̸=mz

F (ϵ̄mz,m̃z̃
t + ϵmz

t )dϵmz
t . (A.5)
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Substituting for F (ϵ) and f(ϵ) leads to the following:

Ξns
t =

∑
m∈N

∑
z∈S

∫ ∞

−∞
(βV mz

t+1 − ζns,mz + νϵmz
t )

× e−ϵmz
t −ðe− exp(−ϵmz

t −ð) ∏
m̃z̃ ̸=mz

e− exp(−(ϵ̄mz,m̃z̃
t +ϵmz

t )−ð)dϵmz
t

=
∑

m∈N

∑
z∈S

∫ ∞

−∞
(βV mz

t+1 − ζns,mz + νϵmz
t )

× e−ϵmz
t −ðe

− exp(−ϵmz
t −ð) ∑

m̃∈N

∑̃
z∈S

exp(−ϵ̄mz,m̃z̃
t )

dϵmz
t ,

(A.6)

where the rearrangement is based on ϵ̄mz,mz
t = 0 and exp(−ϵ̄mz,mz

t ) = 1.

Next, one can simplify the above expression by defining Zmz
t ≡ log

( ∑
m̃∈N

∑̃
z∈S

exp
(
−ϵ̄mz,m̃z̃

t

))
and κmz

t ≡ ϵmz
t + ð as follows:

Ξns
t =

∑
m∈N

∑
z∈S

∫ ∞

−∞
(βV mz

t+1 − ζns,mz + ν(κmz
t − ð))e−κmz

t −exp(−(κmz
t −Zmz

t ))dκmz
t . (A.7)

With an additional change of variable ỹmz
t = κmz

t − Zmz
t , it follows:

Ξns
t =

∑
m∈N

∑
z∈S

∫ ∞

−∞
(βV mz

t+1 − ζns,mz + ν(ỹmz
t + Zmz

t − ð))e−ỹmz
t −Zmz

t −exp(−ỹmz
t )dỹmz

t

=
∑

m∈N

∑
z∈S

e−Zmz
t

(βV mz
t+1 − ζns,mz + ν(Zmz

t − ð)) + ν
∫ ∞

−∞
ỹmz

t e−ỹmz
t exp(−ỹmz

t )dỹmz
t︸ ︷︷ ︸

=ð


=

∑
m∈N

∑
z∈S

e−Zmz
t (βV mz

t+1 − ζns,mz + νZmz
t ).

(A.8)

Substituting ϵ̄mz,m̃z̃
t into the definition of Zmz

t , one can express Zmz
t as:

Zmz
t = log

( ∑
m̃∈N

∑
z̃∈S

exp
(

−
βV mz

t+1 − ζns,mz

ν
+ βV m̃z̃

t+1 − ζns,m̃z̃

ν

))

= log
(

exp
(

−
βV mz

t+1 − ζns,mz

ν

) ∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

))

= −
(
βV mz

t+1 − ζns,mz

ν

)
+ log

∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

)
.

(A.9)
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Again, substituting the above expression for Zmz
t into Ξn

t leads to the following:

Ξns
t =

∑
m∈N

∑
z∈S

exp
((

βV mz
t+1 − ζns,mz

ν

)
− log

∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

))

×
(
βV mz

t+1 − ζns,mz − ν

(
βV mz

t+1 − ζns,mz

ν

)
+ ν log

∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

))

=
[ ∑

m∈N

∑
z∈S

exp
(
βV mz

t+1 − ζns,mz

ν

)] [ ∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

)]−1

︸ ︷︷ ︸
=1

×
[
ν log

∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

)]

= ν log
∑

m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

)
.

(A.10)

Therefore, the expected lifetime utility can be expressed as:

V ns
t = uns

t + ν log
∑

m∈N

∑
z∈S

exp
(
βV mz

t+1 − ζns,mz

ν

)
︸ ︷︷ ︸

=Ξns
t

. (A.11)

The above expression implies that the expected lifetime utility is current period utility plus the
option value that can be obtained when moving to a different labor market, net of migration costs.

Proof of Equation (8) — The fraction of migrating households from country-sector pair ns to mz
is equal to the probability that moving to mz provides the maximum expected lifetime utility:

µns,mz
t = Pr

(
βV mz

t+1 − ζns,mz + νϵmz
t ≥ max

m̃∈N ,z̃∈S

{
βEt(vm̃z̃

t+1) − ζns,m̃z̃ + νϵm
t

})
=
∫ ∞

−∞
f(ϵmz

t )
∏

m̃z̃ ̸=mz

Pr
(
ϵm̃z̃

t ≤
β(V mz

t+1 − V m̃z̃
t+1) − (ζns,mz − ζns,m̃z̃)

ν
+ ϵmz

t

)
dϵmz

t

=
∫ ∞

−∞
f(ϵmz

t )
∏

m̃z̃ ̸=mz

F
(
ϵm̃z̃

t ≤ ϵ̄mz,m̃z̃
t + ϵmz

t

)
dϵmz

t .

(A.12)

Similar to equation (A.6), it can be shown that:

µns,mz
t =

∫ ∞

−∞
e−ϵmz

t −ðe
− exp(−ϵmz

t −ð) ∑
m̃∈N

∑̃
z∈S

exp(−ϵ̄mz,m̃z̃
t )

dϵmz
t . (A.13)

Again, taking similar steps in equation (A.7) and equation (A.8) leads to the following:

µns,mz
t =

∫ ∞

−∞
e−Zmz

t e−ỹmz
t −exp(−ỹmz

t )dỹmz
t

= exp(−Zmz
t )

∫ ∞

−∞
e−ỹmz

t −exp(−ỹmz
t )dỹmz

t︸ ︷︷ ︸
=1

. (A.14)
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Substituting Zmz
t in equation (A.9) into the above expression, it follows that:

µns,mz
t = exp

((
βV mz

t+1 − ζns,mz

ν

)
− log

∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

))

= exp
(
βV mz

t+1 − ζns,mz

ν

)[ ∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

)]−1

=
exp

(
(βV mz

t+1 − ζns,mz)/ν
)

∑
m̃∈N

∑̃
z∈S

exp((βV m̃z̃
t+1 − ζns,m̃z̃)/ν) .

(A.15)

■

A.2 Proof of Optimal Land Allocation

Proof. The proofs for the crop production component closely follow Sotelo (2020). In Sotelo
(2020), a heterogeneous land model is employed to evaluate the impact of reduced domestic trade
costs from paving roads. One notable difference is that Sotelo (2020) assumes intermediate inputs
used in agricultural production are all imported from abroad, with their prices taken as given.
Consequently, the income of the representative consumer in Sotelo (2020) is characterized by the
sum of agricultural wages, non-agricultural wages, and rental revenue from land, excluding rental
revenues from intermediate inputs. In this paper, rental revenue from intermediate inputs in each
country is absorbed as income for workers in the agricultural sector. Furthermore, the income from
the two sectors–agriculture and non-agriculture– is differentiated, which provides motivation for
labor mobility among households.

Proof of Equation (11) — The equilibrium rental rate of land can be derived by equating the
marginal cost of crop production with the crop price under perfect competition. Let us start with
the representative farmer’s cost minimization problem:

min
ℓnj

t (ω),hnj
t (ω)

{
wnA

t (ω)ℓnj
t (ω) + zn

t m
nj
t (ω) + rnj

t (ω)hnj
t (ω)

}
s.t. Bn

t

(
ℓnj

t (ω)
)αnj (

mnj
t (ω)

)ρnj (
hnj

t (ω)Anj
t (ω)

)γnj

≥ q̄.

The Lagrangian function is obtained by:

L = wnA
t (ω)ℓnj

t (ω) + zn
t m

nj
t (ω) + rnj

t (ω)hnj
t (ω)

− Λ
(
Bn

t

(
ℓnj

t (ω)
)αnj (

mnj
t (ω)

)ρnj (
hnj

t (ω)Anj
t (ω)

)γnj

− q̄
)
.
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The first-order conditions are given by:

[
ℓnj

t (ω)
]

: ℓnj
t (ω) =

(
Λαnjqnj

t (ω)
wnA

t

)
(A.16)

[
mnj

t (ω)
]

: mnj
t (ω) =

(
Λρnjqnj

t (ω)
zn

t

)
(A.17)

[
hnj

t (ω)
]

: hnj
t (ω) =

(
Λγnjqnj

t (ω)
rnj

t (ω)

)
. (A.18)

Rearranging the first-order conditions, the optimal demand of labor and intermediate inputs can be
expressed in terms of optimal demand of land input.

ℓnj
t (ω) =

(
rnj

t (ω)
wnA

t

)(
αnj

γnj

)
hnj

t (ω)

mnj
t (ω) =

(
rnj

t (ω)
zn

t

)(
ρnj

γnj

)
hnj

t (ω)
(A.19)

Substituting the above equation into the constraint leads to the conditional input demands of land
for producing the output quantity of q̄:

hnj
t (ω) =

(
q̄

Bn
t (Anj

t (ω))γnj

)(
rnj

t (ω)
wnA

t

)−αnj (
rnj

t (ω)
zn

t

)−ρnj (
αnj

γnj

)−αnj (
ρnj

γnj

)−ρnj

. (A.20)

Then the cost of production is obtained as:

c(q̄) =
(
c̄nj(wnA

t )αnj (znj
t )ρnj (rnj

t (ω))γnj

Bn
t (Anj

t (ω))γnj

)
q̄ (A.21)

where c̄nj = (αnj)−αnj (ρnj)−ρnj (γnj)−γnj .
Under perfect competition, the marginal cost of production is equalized to the crop price in

equilibrium:

pnj
t =

(
c̄nj(wnA

t )αnj (znj
t )ρnj (rnj

t (ω))γnj

Bn
t (Anj

t (ω))γnj

)
. (A.22)

Therefore, the equilibrium rental rate of land can be expressed as:

rnj
t (ω) = Rnj

t A
nj
t (ω), (A.23)

where

Rnj
t ≡

(
pnj

t B
n
t

c̄nj(wnA
t )αnj (znj

t )ρnj

)1/γnj

. (A.24)

Proof of Equation (13) — The distributional assumption on Anj
t (ω) implies that Rnj

t A
nj
t (ω) is

independently and identically Fréchet distributed with shape parameter θ > 1 and scale parameter
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ΥRnj
t A

nj
t :

Pr
(
Rnj

t A
nj
t (ω) ≤ x

)
= Pr

(
Anj

t (ω) ≤ x

Rnj
t

)

= exp

−
(

x

ΥRnj
t A

nj
t

)−θ
 .

(A.25)

The probability that crop j generates the highest land rent and is planted in a parcel ω of a field
f in country n is given by:

πnj
t ≡ Pr

(
Rnj

t A
nj
t (ω) ≥ max

k ̸=j

{
Rnk

t Ank
t (ω)

})
. (A.26)

By denoting the cumulative probability of Rnj
t A

nj
t (ω) as Fj(x) = Pr

(
Rnj

t A
nj
t (ω) ≤ x

)
, one could

proceed as follows:

πnj
t =

∫ ∞

0
Pr
(

max
k∈J c\j

Rnk
t Ank

t (ω)
)
F ′

j(x)dx

= Pr
 ⋂

k∈J c\j

{
Rnk

t Ank
t (ω) ≤ x

}F ′
j(x)dx

=
∫ ∞

0

∏
k∈J c\j

Fk(x)F ′
j(x)dx.

(A.27)

Substituting Fj(x) = Pr
(
Rnj

t A
nj
t (ω) ≤ x

)
into the above equation leads to the following:

πnj
t =

∫ ∞

0

∏
k∈J c\j

exp

−
(

x

ΥRnk
t Ank

t

)−θ


× exp

−
(

x

ΥRnj
t A

nj
t

)−θ

(

x

ΥRnj
t A

nj
t

)−θ−1 (
θ

ΥRnj
t A

nj
t

)
dx.

(A.28)

Rearranging terms leads to the following:

πnj
t =

∫ ∞

0

∏
k∈J c

exp

−
(

x

ΥRnk
t Ank

t

)−θ

(

x

ΥRnj
t A

nj
t

)−θ−1 (
θ

ΥRnj
t A

nj
t

)
dx

=
(
ΥRnj

t A
nj
t

)θ
∫ ∞

0
exp

−
J∑

k=1

(
x

ΥRnk
t Ank

t

)−θ
 θx−θ−1dx

= (Rnj
t ΥAnj

t )θ∑J
k=1(ΥRnk

t Ank
t )θ

[
exp

{
−x−θ

J∑
k=1

(
ΥRnk

t Ank
t

)θ
}]∞

0︸ ︷︷ ︸
=1

.

(A.29)

Therefore, it follows that:

πnj
t = (Rnj

t A
nj
t )θ∑J

k=1(Rnk
t Ank

t )θ
. (A.30)

56



Draft version: February 19, 2025

■

A.3 Proof of Optimal Revenue and Crop Supply

Proof. Proof of Equation (14) — From equation (11), recall that rnj
t (ω) = Rnj

t A
nj
t (ω) follows

the Fréchet distribution with shape parameter θ > 1 and scale parameter ΥRnj
t A

nj
t . Then the

probability of Rnj
t A

nj
t (ω) conditional on crop j being the most profitable in parcel ω in country n,

is given by:

Pr
(
Rnj

t A
nj
t (ω) = x

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

)

=
Pr
(
Rnj

t A
nj
t (ω) = x

)∏
k∈J c\j Pr

(
Rnk

t Ank
t (ω) ≤ x

)
Pr
(
Rnj

t A
nj
t (ω) ∈ arg maxk∈J c Rnk

t Ank
t (ω)

)
=
F ′

j(x)∏k∈J c\JFk(x)
πnj

t

= exp

−
(

x

ΥRnj
t A

nj
t

)−θ

(

x

ΥRnj
t A

nj
t

)−θ−1 (
θ

ΥRnj
t A

nj
t

)

× exp

−
∑

k∈J c\j

(
x

ΥRnk
t Ank

t

)−θ
 (πnj

t )−1

= exp

−
J∑

k=1

(
x

ΥRnk
t Ank

t

)−θ
 θx−θ−1(ΥRnj

t A
nj
t )θ(πnj

t )−1.

(A.31)

The conditional expectation of Rnj
t A

nj
t (ω) can be obtained as follows:

E
[
Rnj

t A
nj
t (ω)

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
=
∫ ∞

0
xPr

(
Rnj

t A
nj
t (ω) = x

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

)
dx

=
∫ ∞

0
exp

−
J∑

k=1

(
x

ΥRnk
t Ank

t

)−θ
 θx−θ(ΥRnj

t A
nj
t )θ(πnj

t )−1dx

=
∫ ∞

0
exp

{
−x−θ

J∑
k=1

(
ΥRnk

t Ank
t

)θ
}
θx−θ

J∑
k=1

(ΥRnk
t Ank

t )θdx.

(A.32)

Let u = x−θ∑J
k=1(ΥRnk

t Ank
t )θ. Integration by substitution yields:

E
[
Rnj

t A
nj
t (ω)

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]

=
∫ 0

∞
exp(−u)θu(−θx−θ−1)−1

(
J∑

k=1
(ΥRnk

t Ank
t )θ

)−1

du

=
∫ ∞

0
exp(−u)u1−(θ+1)/θ

(
J∑

k=1
(ΥRnk

t Ank
t )θ

)(θ+1)/θ−1

du

= Υ
(

J∑
k=1

(Rnk
t Ank

t )θ

)1/θ ∫ ∞

0
u(θ−1)/θ−1 exp(−u)du.

(A.33)
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Note that Υ ≡ Γ(1 − 1
θ
)−1 and Γ(z) =

∫∞
0 xz−1e−xdx. Therefore, it follows:

Φn
t = Et

[
Rnj

t A
nj
t (ω)

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
=
(

J∑
k=1

(Rnk
t Ank

t )θ

)1/θ

. (A.34)

Proof of Equation (15) — Recall the relationship between optimal demand for labor, intermediate,
and land inputs from equation (A.19):

ℓnj
t (ω) =

(
rnj

t (ω)
wnA

t

)(
αnj

γnj

)
hnj

t (ω)

mnj
t (ω) =

(
rnj

t (ω)
zn

t

)(
ρnj

γnj

)
hnj

t (ω).
(A.35)

Using the above equations, the optimal revenue per unit of land when the farmer plants crop j on a
given plot ω in country n is obtained by:

ψnj
t (ω) = pnj

t q
nj
t (ω)|hnj

t (ω)=1

= pnj
t B

n
t

(
ℓnj

t (ω)
)αnj (

mnj
t (ω)

)ρnj (
hnj

t (ω)Anj
t (ω)

)γnj

|hnj
t (ω)=1

= pnj
t B

n
t

(
αnjrnj

t (ω)
γnjwnA

t

)αnj (
ρnjrnj

t (ω)
γnjzn

t

)ρnj (
Anj

t (ω)
)γnj

.

(A.36)

Substituting the optimal rental rate from equation (11), the optimal revenue per unit of land for a
given plot ω is derived as:

ψnj
t (ω) =

(
pnj

t B
n
t

c̄nj(wnA
t )αnj (znj

t )ρnj

)(
1
γnj

)(
Rnj

t A(ω)
)αnj+ρnj (

Anj
t (ω)

)γnj

= Rnj
t A

nj
t (ω)

γnj
.

(A.37)

Finally, the optimal revenue from growing crop j in country n is the product of the total amount
of land in country n, the share of land allocated to crop j, and the average revenue from the pro-
duction of crop j, conditional on crop j being selected. Considering that ψnj

t (ω) is simply a scaled
version of rnj

t (ω) by 1/γnj , it is straightforward to demonstrate that:

Ψnj
t = Et

[
ψnj

t (ω)
∣∣∣∣ Rnj

t A
nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
πnj

t H
n
t

= Et

[
Rnj

t A
nj
t (ω)

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

] (
πnj

t H
n
t

γnj

)

=
(

J∑
k=1

(Rnk
t Ank

t )θ

)1/θ (
πnj

t H
n
t

γnj

)

= (Rnj
t A

nj
t )θ(Φn

t )1−θ

(
Hn

t

γnj

)
,

(A.38)

where Φn
t =

(∑J
k=1(Rnk

t Ank
t )θ

)1/θ
. ■
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A.4 Proof of Optimal Input Demands

Proof. Proof of Equation (17) — From equation (A.37), recall that the optimal revenue per unit
of land for a given plot (ω) is given by:

ψnj
t (ω) = Rnj

t A
nj
t (ω)

γnj
. (A.39)

Then the optimal input demand per unit of land for plot (ω) for labor and intermediate inputs are
respectively given by:

ℓnj
t (ω) =

(
αnj

γnj

)(
Rnj

t A
nj
t (ω)

wnA
t

)

mnj
t (ω) =

(
ρnj

γnj

)(
Rnj

t A
nj
t (ω)

znA
t

)
.

(A.40)

The labor input demand for the production of crop j is the product of the land size of each country,
the fraction of land allocated to the crop j, and the average labor input demand conditional on crop
j being chosen as the rent-maximizing crop among all crop varieties:

ℓnj
t = Et

[
ℓnj

t (ω)
∣∣∣∣ Rnj

t A
nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
πnj

t H
n
t

= Et

[
Rnj

t A
nj
t (ω)

∣∣∣∣ Rnj
t A

nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

] (
αnj

γnj

)(
πnj

t H
n
t

wnA
t

)

=
(
αnj

wnA
t

)
Ψnj

t

(A.41)

And similarly, for the intermediate input, it follows:

mnj
t = Et

[
mnj

t (ω)
∣∣∣∣ Rnj

t A
nj
t (ω) ∈ arg max

k∈J c
Rnk

t Ank
t (ω)

]
πnj

t H
n
t =

(
ρnj

zn
t

)
Ψnj

t . (A.42)

Proof of Equation (18) — Given the above expression for country- and crop-level input demands,
the aggregate country-level labor demand for all crops in country n is expressed as:

ℓnA
t =

J∑
j=1

ℓnj
t =

J∑
j=1

(
αnj

wnA
t

)
Ψnj

t

=
J∑

j=1

(
αnj

wnA
t

)
(Rnj

t A
nj
t )θ(Φn

t )1−θ

(
Hn

t

γnj

)

=
(
Hn

t Φn
t

wnA
t

)
J∑

j=1
αnj(γnj)−1πnj

t .

(A.43)

It is beneficial to note that the revenue share of crop, χnj
t , can be expressed as a function of land
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allocation share, πnk
t , as follows.

χnj
t = Ψnj

t∑J
k=1 Ψnk

t

= (Rnj
t A

nj
t )θ(Φn

t )1−θHn
t (γnj)−1∑J

k=1(Rnk
t Ank

t )θ(Φn
t )1−θHn

t (γnk)−1

= (γnj)−1πnj
t∑J

k=1(γnk)−1πnk
t

.

(A.44)

Rearranging the terms, land allocation share, πnj
t , can be expressed as follows:

πnj
t = γnjχnj

t

J∑
k=1

(γnk)−1πnk
t . (A.45)

Replacing the aforementioned expression for πnj
t into equation (A.43) and subsequently substi-

tuting Ψn
t from equation (15), the country-level aggregate labor demand is then simplified to the

following form:

ℓnA
t =

(
Hn

t Φn
t

wnA
t

)
J∑

j=1
αnj(γnj)−1πnj

t

=
(
Hn

t Φn
t

wnA
t

)
J∑

j=1
αnjχnj

t

J∑
k=1

(γnk)−1πnk
t

=
(

Ψn
t

wnA
t

)
J∑

j=1
αnjχnj

t = ᾱn
t

wnA
t

Ψn
t

(A.46)

where ᾱn
t = ∑J

j=1 α
njχnj

t . Taking a similar approach, the country-level aggregate intermediate
input demand is expressed as:

mn
t =

J∑
j=1

mnj
t = ρ̄n

t

zn
t

Ψn
t , (A.47)

where ρ̄n
t = ∑J

j=1 χ
nj
t ρ

nj .
■
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B Proofs for Dynamic Hat Algebra

B.1 Proof of Proposition 1

Proof. Consider the allocation of temporary equilibrium {πt, st, Lt, Xt} at time t and the changes
{L̇t+1, Θ̇t+1} as given. The following set of proofs demonstrates how to express the equilibrium
conditions for the temporary equilibrium using dot notation ẋt+1 = (xt+1/xt), without relying on
the information on the level of fundamental variables.

1) Aggregate-level demand

Proof of Equation (24) — From equation (3), the expression for Ċns
t is simply given by taking a

ratio between Cns
t+1 and Cns

t as follows:

Ċns
t = Cns

t+1
Cns

t

=
(
ċns,A

t+1

)ϕn (
ċns,M

t+1

)1−ϕn

. (A.48)

Proof of Equation (25) — Consider the utility maximization problem of a household working in
the labor market ns, whose income is Ens

t . The non-agricultural good is considered as a numeraire.

max
cns,A

t ,cns,M
t

(
cns,A

t

)ϕn (
cns,M

t

)1−ϕn

s.t. P n
t c

ns,A
t + cns,A

t = Ens
t

(A.49)

The optimal consumption of the agricultural and non-agricultural goods are respectively given by:

cns,A
t = ϕnEns

t

P n
t

and cns,M
t = (1 − ϕn)Ens

t . (A.50)

Then it follows:

ċns,A
t = cns,A

t+1

cns,A
t

= Ėns
t+1

Ṗ n
t+1

ċns,M
t+1 = cns,M

t+1

cns,M
t

= Ėns
t+1.

(A.51)

2) Crop-level demand

Proof of Equation (26) — Given the assumption of CES aggregation of agricultural goods, the
optimal crop consumption is given by:

cns,j
t = ϕn,j

(
P nj

t

P n
t

)−κ

cns,A
t , for j ∈ J . (A.52)

Then it follows:

ċns,j
t+1 = cns,j

t+1

cns,j
t

=
(
Ṗ nj

t+1

Ṗ n
t+1

)−κ

ċns,A
t+1 . (A.53)

Proof of Equation (27) — Recall that CES price index for the aggregate agricultural good is given

61



Draft version: February 19, 2025

by:

P n
t =

∑
j∈J

ϕn,j(P nj
t )1−κ

1/(1−κ)

(A.54)

Note that under the CES assumption, the expenditure share on crop j is identical for all households
across all sectors s.

snj
t =

(
P nj

t cns,j
t

P n
t c

ns,A
t

)
= ϕn,j

(
P nj

t

P n
t

)1−κ

, for j ∈ J , s ∈ S (A.55)

Then it follows:

Ṗ n
t+1 = P n

t+1
P n

t

=
(∑

j∈J ϕ
n,j(P nj

t )1−κ(Ṗ nj
t+1)1−κ

(P n
t )1−κ

)1/(1−κ)

=
∑

j∈J
snj

t (Ṗ nj
t+1)1−κ

1/(1−κ)

.

(A.56)

Proof of Equation (28) — The transition of crop-level expenditure share is captured by:

snj
t+1 = snj

t

(
Ṗ nj

t+1ċ
ns,j
t+1

Ṗ n
t+1ċ

ns,A
t+1

)
= snj

t

(
Ṗ nj

t+1

Ṗ n
t+1

)1−κ

. (A.57)

3) Crop- and origin-level demand

Proof of Equation (29) — The Armington (CES) assumption implies the optimal demand for crops
of each origin is given by:

cm,ns,j
t = ϕm,n,j

(
pm,n,j

t

P nj
t

)−δ

cns,j
t . (A.58)

Then it follows:

ċm,ns,j
t+1 = cm,ns,j

t+1

cm,ns,j
t

=
(
ṗm,n,j

t

Ṗ nj
t

)−δ

ċns,j
t+1

=
(
τ̇m,n,j

t+1 ṗmj
t+1

Ṗ nj
t+1

)−δ

ċns,j
t+1 .

(A.59)

Proof of Equation (30) — Due to the Armington assumption, the price index of each crop is given
by:

P nj
t =

[ ∑
m∈N

ϕm,n,j(pm,n,j
t )1−δ

]1/(1−δ)

, j ∈ J . (A.60)

Again, the expenditure share on a crop from each import origin remains identical for consumers
across all sectors:

smnj
t =

(
pm,n,j

t cm,ns,j
t

P nj
t cns,j

t

)
= ϕm,n,j

(
pm,n,j

t

P nj
t

)1−δ

. (A.61)
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Then it follows:

Ṗ nj
t+1 = P nj

t+1

P nj
t

=
(∑

m∈N ϕm,n,j(pm,n,j
t )1−δ(ṗm,n,j

t+1 )1−δ

(P nj
t )1−δ

)1/(1−δ)

=
( ∑

m∈N
smnj

t (ṗm,n,j
t+1 )1−δ

)1/(1−δ)

=
( ∑

m∈N
smnj

t (τ̇m,n,j
t+1 ṗmj

t+1)1−δ

)1/(1−δ)

.

(A.62)

Proof of Equation (31) — The transition of origin- and crop-level expenditure share is given by:

smnj
t+1 = smnj

t

(
ṗm,n,j

t+1 ċm,ns,j
t+1

Ṗ nj
t+1ċ

ns,j
t+1

)

= smnj
t

(
ṗm,n,j

t

Ṗ nj
t

)1−δ

= smnj
t

(
τ̇m,n,j

t+1 ṗm,j
t

Ṗ nj
t

)1−δ

.

(A.63)

4) Crop production

Proof of Equation (32) — Taking a ratio of Rnj
t from equation (12) between time t + 1 and t, it

follows:

Ṙnj
t+1 = Rnj

t+1

Rnj
t

=

(
pnj

t+1B
n
t+1(c̄nj)−1(wn A

t+1)−αnj (zn
t+1)−ρnj

)1/γnj

(
pnj

t B
n
t (c̄nj)−1(wn A

t )−αnj (zn
t )−ρnj

)1/γnj

=
(
ṗnj

t+1Ḃ
n
t+1(ẇn A

t+1)−αnj (żn
t+1)−ρnj

)1/γnj

.

(A.64)

Proof of Equation (33) — Consider the optimal share of land allocation from equation (13) at time
t + 1. Multiplying and dividing by (Rnk

t Ank
t )θ and

∑J
f=1(R

nf
t Anf

t )θ, and then using the definition
of πnj

t , it follows:

πnj
t+1 = (Rnj

t+1A
nj
t+1)θ∑J

k=1(Rnk
t+1A

nk
t+1)θ

=
(
Ṙnj

t+1Ȧ
nj
t+1

)θ


(
Rnj

t A
nj
t

)θ

∑J
k=1(R

nf
t Anf

t )θ


 ∑J

f=1(R
nf
t Anf

t )θ∑J
k=1(Ṙnk

t+1Ȧ
nk
t+1)θ

(
Rnk

t Ank
t

)θ



=
(
Ṙnj

t+1Ȧ
nj
t+1

)θ
πnj

t

 1∑J
k=1(Ṙnk

t+1Ȧ
nk
t+1)θ

(
(Rnk

t Ank
t )θ∑J

f=1(Rnf
t Anf

t )θ

)
 .

(A.65)

Substituting πnj
t into the denominator, the expression for πnj

t+1 is given by:

πnj
t+1 = πnj

t (Ṙnj
t+1Ȧ

nj
t+1)θ∑J

k=1 π
nk
t (Ṙnk

t+1Ȧ
nk
t+1)θ

. (A.66)
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Proof of Equation (34) — Consider the average rental rate of land for each crop from equation
(14). Multiplying and dividing by (Rnk

t Ank
t )θ, it follows:

Φ̇n
t+1 = Φn

t+1
Φn

t

=
∑J

k=1(Ṙnk
t+1Ȧ

nk
t+1)θ(Rnk

t Ank
t )θ∑J

j=1(R
nj
t A

nj
t )θ

1/θ

=
(

J∑
k=1

πnk
t (Ṙnk

t+1Ȧ
nk
t+1)θ

)1/θ

.

(A.67)

Proof of Equation (35) — Given Ln A
t and equilibrium conditions (18) and (23), the market wage

for the agricultural sector is given by:

wn A
t = ᾱn

t

Ln A
t

Ψn
t , (A.68)

where ᾱn
t = ∑J

j=1 α
njχnj

t and χnj
t = (γnj)−1πnj

t∑J

k=1(γnk)−1πnk
t

. Substituting Ψn
t from equation (16) and ᾱn

t

into wn A
t , it follows:

wn A
t =

∑J
j=1 α

nj(γnj)−1πnj
t∑J

k=1(γnk)−1πnk
t

 Φn
t H

n
t

Ln
t

J∑
ȷ̃=1

(γnȷ̃)−1πnȷ̃
t

=
 J∑

j=1
αnj(γnj)−1πnj

t

(Φn
t H

n
t

Ln A
t

)
.

(A.69)

Expressing wn A
t in time differences, it follows:

ẇn A
t+1 = wn A

t+1
wn A

t

=
∑J

j=1 α
nj(γnj)−1πnj

t+1∑J
k=1 α

nk(γnk)−1πnk
t

(Φ̇n
t+1Ḣ

n
t+1

L̇n A
t+1

)
. (A.70)

For the intermediate input, similar steps can be followed to obtain:

żn
t+1 =

∑J
j=1 ρ

nj(γnj)−1πnj
t+1∑J

k=1 ρ
nk(γnk)−1πnk

t

(Φ̇n
t+1Ḣ

n
t+1

Ṁn
t+1

)
(A.71)

5) Budget constraint

Proof of Equation (36) — Consider the income of households in the agricultural sector from
equation (21). Substituting Ψn

t from equation (16) into En A
t , it follows:

En A
t =

(
Ψn

t

Ln A
t

)
=
(

Φn
t H

n
t

Ln A
t

)
J∑

j=1
(γnj)−1πnj

t . (A.72)

Taking time differences of En A
t , it follows:

Ėn A
t+1 = En A

t+1
En A

t

=
∑J

j=1(γnj)−1πnj
t+1∑J

k=1(γnk)−1πnk
t

(Φ̇n
t+1Ḣ

n
t+1

L̇n A
t+1

)
. (A.73)
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Next, consider the income of households working in the non-agricultural sector from equation
(21). Taking time differences of En M

t , it is straight to show:

Ėn M
t+1 = En M

t+1
En M

t

= Ȧn M
t+1 (L̇n M

t+1 )ξn−1(Ṡn
t+1)1−ξn

. (A.74)

6) Crop market clearing

Proof of Equation (37) — Consider the market clearing condition for goods in equation (22).
Multiplying pnj

t on both sides, the market clearing condition now becomes equating the value of
production and the total value of exports:

pnj
t q

nj
t =

∑
m∈N

τn,m,j
t pnj

t c
n,m,j
t

=
∑

m∈N
Xn,m,j

t ,
(A.75)

where cn,m,j
t = ∑

s∈S c
n,ms,j
t Lms

t is the total consumption of good j in country m, imported from
country n. Note thatXn,m,j

t = τn,m,j
t pn,j

t cn,m,j
t is the trade value of crop j from country n to country

m. Expressing the above equation in time differences, it follows:

ṗnj
t+1q̇

nj
t+1 =

∑
m∈N Xn,m,j

t+1∑
m̃∈N Xn,m̃,j

t

, (A.76)

By definition, the country- and crop-level optimal revenue is Ψnj
t = pnj

t q
nj
t , hence Ψ̇nj

t = ṗnj
t+1q̇

nj
t+1.

Taking time differences of Ψnj
t from equation (15), the LHS of the above equation is obtained by:

Ψ̇nj
t+1 = Ψnj

t+1

Ψnj
t

= (Ṙnj
t+1Ȧ

nj
t+1)θ(Φ̇n

t+1)1−θḢn
t+1. (A.77)

Then the market clearing condition becomes:

∑
m∈N

Xn,m,j
t+1 = (Ṙnj

t+1Ȧ
nj
t+1)θ(Φ̇n

t+1)1−θḢn
t+1

( ∑
m̃∈N

Xn,m̃,j
t

)
, for j ∈ J

with Xn,m,j
t+1 = τ̇n,m,j

t+1 ṗnj
t+1ċ

n,m,j
t+1 Xn,m,j

t .

(A.78)

Now, consider the definition of cn,m,j
t , where the country-level consumption of each imported

crop is the sum of all consumption of that crop consumed by households across all sectors. Sub-
stituting the expressions for optimal consumption cn,ms,j

t , cns,j , and cns,A
t from equation (A.58),

(A.52), and (A.50), respectively, it follows:

cn,m,j
t =

∑
s∈S

cn,ms,j
t Lms

t

= ϕn,m,jϕm,jϕm

(
pn,m,j

t

Pmj
t

)−δ (
Pmj

t

Pm
t

)−κ ( 1
Pm

t

)∑
s∈S

Ems
t Lms

t .

(A.79)
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Taking time differences, ċn,m,j
t+1 is obtained by

ċn,m,j
t+1 =

∑
s∈S c

n,ms,j
t+1 Lms

t+1∑
z∈S c

n,mz,j
t Lmz

t

=
(
ṗn,m,j

t+1

Ṗmj
t+1

)−δ (
Ṗmj

t+1

Ṗm
t+1

)−κ ( 1
Ṗm

t+1

)(∑
s∈S Ė

ms
t+1L̇

ms
t+1E

ms
t Lms

t∑
z∈S E

mz
t Lmz

t

)
.

(A.80)

Substituting ċn,m,j
t+1 from the above into Xn,m,j

t+1 , the transition of trade flows is captured by:

Xn,m,j
t+1 = τ̇n,m,j

t+1 ṗnj
t+1ċ

n,m,j
t+1 Xn,m,j

t

=
(
τ̇n,m,j

t+1 ṗnj
t+1

Ṗmj
t+1

)1−δ (
Ṗmj

t+1

Ṗm
t+1

)1−κ (∑
s∈S Ė

ms
t+1L̇

ms
t+1E

ms
t Lms

t∑
z∈S E

mz
t Lmz

t

)
Xn,m,j

t .
(A.81)

■

B.2 Proof of Proposition 2

Proof. The proof of the dynamic hat algebra for the sequential equilibrium component is following
Caliendo et al. (2019). Consider the initial allocation of the economy, (L0, π0, s0, µ−1, X0), and the
converging sequence of exogenous time-varying fundamentals, {Θ̇t}∞

t=0, as given.

Proof of Equation (38) — Consider the migration share from equation (8). Taking a ratio between
µns,mz

t+1 and µns,mz
t , and multiplying and dividing by exp

(
(βV m̃z̃

t+1 − ζns,m̃z̃)/ν
)

in the denominator,
it follows:

µns,mz
t+1
µns,mz

t

=

exp
(
(βV mz

t+2 − ζns,mz)/ν
)

exp((βV mz
t+1 − ζns,mz)/ν)∑

m̃∈N

∑̃
z∈S

exp
(
(βV m̃z̃

t+2 − ζns,m̃z̃)/ν
)

∑
m̂∈N

∑̂
z∈S

exp((βV m̂ẑ
t+1 − ζns,m̂ẑ)/ν)

exp
(
(βV m̃z̃

t+1 − ζns,m̃z̃)/ν
)

exp((βV m̃z̃
t+1 − ζns,m̃z̃)/ν)



=
exp

(
V mz

t+2 − V mz
t+1

)β/ν

∑
m̃∈N

∑̃
z∈S

exp(V m̃z̃
t+2 − V m̃z̃

t+1)β/ν
µns,m̃z̃

t

.

(A.82)

Denoting vns
t = exp(V ns

t ) and substituting into the above expression, µns,mz
t+1 is given by:

µns,mz
t+1 = µns,mz

t (v̇mz
t+2)β/ν∑

m̃∈N

∑̃
z∈S

µns,m̃z̃
t (v̇m̃z̃

t+2)β/ν
. (A.83)

Proof of Equation (40) — Consider the Bellman equation (7) and take differences between V ns
t+1
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and V ns
t . Multiplying and dividing by exp

(
V mz

t+2 − V mz
t+1

)β/ν
within the log term, it follows:

V ns
t+1 − V ns

t = uns
t+1 − uns

t

+ ν log


∑

m∈N

∑
z∈S

exp
(
(βV mz

t+2 − ζns,mz)/ν
)

∑
m̃∈N

∑̃
z∈S

exp((βV m̃z̃
t+1 − ζns,m̃z̃)ν)

exp
(
(βV mz

t+1 − ζns,mz)/ν
)

exp ((βV mz
t+1 − ζns,mz)/ν)




= uns
t+1 − uns

t + ν

( ∑
m∈N

∑
z∈S

exp
(
V mz

t+2 − V mz
t+1

)β/ν
µns,mz

t

)
.

(A.84)
Taking exponential function on both sides yields the equilibrium condition (40):

v̇ns
t+1 = u̇ns

t+1

( ∑
m∈N

∑
z∈S

µns,mz
t (v̇mz

t+2)β/ν

)ν

, (A.85)

where uns
t = exp(uns

t ), and uns
t satisfies the temporary equilibrium. ■

B.3 Policy analysis: Migration Costs

This subsection explains how the counterfactual analysis on migration costs is conducted in sec-
tion 6.2. Let ζ̄ns,mz represent a counterfactual migration cost. The first analysis considers the
counterfactual economy facing a sudden shock to migration cost in the initial period, which re-
mains permanently, such that all migration costs becomes infinitely high, i.e., ζ̄ns,mz → ∞ for all
n, s,m, z. Then it is straightforward to show that for, all t ≥ 0,

µns,mz
t =

1, if n = m and s = z,

0, otherwise.
(A.86)

Then the consumption equivalent variation can be obtained using the equation (50).
The second analysis consider a counterfactual economy where the cross-country international

migration costs become infinitely large starting in the initial period and remains so permanently. In
other worlds, the bilateral migration cost is ζns,mz before the initial period (t ≤ −1), but there is a
sudden shock to the migration costs in the initial period (t = 0) such that ζ̄ns,mz → ∞, for ∀n ̸= m.
The migration costs for the domestic sectoral reallocation are assumed to remain unchanged, i.e.,
ζ̄ns,mz = ζns,mz for ∀n = m.

Given µns,mz
−1 , the transition in migration share for the initial period is captured by,

µns,mz
0
µns,mz

−1
=

exp
(
(βV mz

1 − ζ̄ns,mz)/ν
)

exp((βV mz
0 − ζns,mz)/ν)∑

m̃∈N

∑̃
z∈S

exp
(
(βV m̃z̃

1 − ζ̄ns,m̃z̃)/ν
)

∑
m̂∈N

∑̂
z∈S

exp((βV m̂ẑ
0 − ζns,m̂ẑ)/ν)

(
exp((βV m̃z̃

0 − ζns,m̃z̃)/ν)
exp((βV m̃z̃

0 − ζns,m̃z̃)/ν)

)

=
exp

(
(V mz

1 − V mz
0 ) − 1

β
(ζ̄ns,mz − ζns,mz)

)β/ν

∑
m̃∈N

∑̃
z∈S

exp
(
(V m̃z̃

1 − V m̃z̃
0 ) − 1

β
(ζ̄ns,mz − ζns,mz)

)β/ν
µns,m̃z̃

t

.

(A.87)
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Applying ζ̄ns,mz → ∞, for ∀n ̸= m, and ζ̄ns,mz = ζns,mz for ∀n = m, the transition in migration
share, for all t ≥ −1, is captured by:

µns,mz
t+1 =


0, if n ̸= m

µns,nz
t (v̇nz

t+2)β/ν∑̃
z∈S

µns,nz̃
t (v̇nz̃

t+2)β/ν
, if n = m (A.88)

Then, as in the previous analysis, the consumption equivalent variation can be obtained using the
equation (50).
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C Details of Data

C.1 GAEZ: Potential Yield

This section outlines the calculation of potential yield at the country level, adjusted for irrigation
availability. Let f ∈ Fn denote a field in the GAEZ data (at 5 arc-minute spatial resolution), where
Fn is the set of fields in country n. The GAEZ data provides potential yield for both irrigated con-
ditions, Anj,irr

t (f), and rain-fed conditions, Anj,rain
t (f), for each field f . It also includes information

on the spatial distribution of irrigation availability, given as the share of total croplands, sn,total(f),
and the share of irrigated croplands, sn,irr(f), for each field f . It is straightforward to calculate the
share of rain-fed croplands as sn,rain(f) = sn,total(f) − sn,irr(f). For each field f where share of
croplands is nonzero, the average potential yield, adjusted for irrigation availability is,

Ãnj
t (f) = Anj,irr

t (f)sn,irr(f) + Anj,rain
t (f)sn,rain(f)

sn,total(f) , for sn,total(f) ̸= 0 (A.89)

The country-level potential yield, adjusted for irrigation availability, is constructed as follows:

Anj
t =

∑
f∈Fn Ãnj

t (f)1{sn,total(f) > 0}
F n

, (A.90)

where F n is the total number of fields in country n. Note that if a field is currently not used as
croplands, then there is no weight assigned to that field to compute the country-level potential
yield. In other words, this study evaluates the changes in potential yield for land within a country
that is currently utilized as cropland. The conversion between croplands and non-croplands is out
of scope of this study.

The agro-climatic potential yield estimates are provided as 30-year averages for both historical
and future periods under each climate change scenario: 1981-2010 (1990s) for the current period,
and 2011-2040 (2020s), 2041-2070 (2050s), and 2071-2100 (2080s) for the future. After construct-
ing the irrigation-adjusted potential yields for these 30-year averages, I assign the average values
as the annual yield for the years 1995, 2025, 2055, and 2085, respectively. Using the potential
yield values for 2055 and 2085, I perform linear extrapolation to generate a prediction for 2100.
Then, based on the values for 2025, 2055, 2085, and the predicted values for 2100, I apply cubic
interpolation to create a smooth annual time path from 2020 to 2100. Given the annual time path
Anj

t , the time differences over 5-year step sizes, Ȧnj
t+1, are constructed. It is assumed Ȧnj

t+1 = 1,
after 2100.

The Figures C.1 to C.3 show the resulting dynamic transition in potential yield for major coun-
tries. The y-axis represents the logarithm of the yield ratio relative to the year 2020.
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Figure C.1: Transition in Potential Yield - North and South America

Notes: The above figure shows the changes in potential yield for major countries under the baseline climate
change scenario RCP 8.5 (HadGEM2-ES). The x-axis shows year for the period 2020-2100, and the y-axis
represents the logarithm of the yield ratio relative to the year 2020. For each country, crops are plotted when their
potential yield is nonzero in the base year 2020.
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Figure C.2: Transition in Potential Yield - Europe and Africa

Notes: The above figure shows the changes in potential yield for major countries under the baseline climate
change scenario RCP 8.5 (HadGEM2-ES). The x-axis shows year for the period 2020-2100, and the y-axis
represents the logarithm of the yield ratio relative to the year 2020. For each country, crops are plotted when their
potential yield is nonzero in the base year 2020.
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Figure C.3: Transition in Potential Yield - Asia and Oceania

Notes: The above figure shows the changes in potential yield for major countries under the baseline climate
change scenario RCP 8.5 (HadGEM2-ES). The x-axis shows year for the period 2020-2100, and the y-axis
represents the logarithm of the yield ratio relative to the year 2020. For each country, crops are plotted when their
potential yield is nonzero in the base year 2020.
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C.2 GAEZ: Multicropping classification

Table 5 presents the multicropping zone classifications from the GAEZ Module 2, version 4. The
GAEZ project categorizes global lands into 9 zones based on their multicropping potential, ranging
from no cropping to triple rice cropping (Fischer et al., 2021). Multicropping can involve either
planting different crops (e.g., maize and beans) or growing the same crop (e.g., rice) sequentially
in the same field after harvest. While practical multicropping often includes specific crop com-
binations to optimize production, the current GAEZ data only indicates the number of potential
multicroppings for all crops, excluding rice. To address this data limitation and simplify model
quantification, I have consolidated the 9 zones into 4 classifications, ranging from zero to triple
cropping, regardless of crop type. I take a conservative approach in regrouping the classifications,
reassigning the multicropping zones only if all crops, including rice, can be grown multiple times.
These classifications are summarized in the third column of Table 5.

Table 5: Multicropping zone classification (GAEZ v4)

Zone Name Value

A Zone of no cropping 0
B Zone of single cropping 1
C Zone of limited double cropping

(relay cropping; single wetland rice may be possible)
1

D Zone of double cropping
(sequential double cropping including wetland rice is not possible)

1

E Zone of double cropping with rice
(sequential cropping with one wetland rice crop is possible)

2

F Zone of double rice cropping or limited triple cropping
(may partly involve relay cropping; a third crop is not possible in case of two
wetland rice crops)

2

G Zone of triple cropping
(sequential cropping of three short-cycle crops; two wetland rice crops are pos-
sible)

2

H Zone of triple rice cropping
(sequential cropping of three wetland rice crops is possible)

3

After reassigning the potential number of multicropping practices at the spatial unit level in the
original GAEZ data, I aggregate the results at the country level, which is the unit of analysis for this
study. Given the multicropping potentials at irrigated conditions, Nn,irr

t (f), and rain-fed conditions,
Nn,rain

t (f), at the field level, the country-level multicropping potential adjusted for irrigation, Nn
t ,

is constructed following a similar approach to that used for potential yield in the appendix C.1.23

23The only difference here is the use of the annual projection for the year 2099 from the GAEZ data, rather than
using a linear extrapolation to generate a prediction for year 2100. Cubic interpolation is then applied to fill in the
annual values as the potential yield data. While the GAEZ data offers both annual and 30-year average projections for
multicropping zone information, the annual projections are not smooth over time. The 30-year average projections are
thus employed to create a smoother path and better capture the overall trend.
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C.3 GAEZ: Irrigation Distribution

The Figure C.4 presents the share of croplands equipped for full control irrigation across coun-
tries in the current period, based on GAEZ data. Asian countries with a strong rice production
culture tend to have a high share of irrigated lands. The figure also highlights that some of the
most climate-vulnerable regions—particularly African countries—are less equipped with irrigation
facilities, making them more severely impacted by climate change shocks in terms of both potential
yield and multicropping capacity.

Figure C.4: Share of Croplands with Irrigation by Country

Note: The above graph illustrates the share of croplands equipped for irrigation among croplands in each country
in current period.
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C.4 Details for Other Dataset

FAO: Price, Production, and Harvest areas — As noted in previous studies (Costinot et al.,
2016; Gouel and Laborde, 2021), the crop-level variables FAO data contains missing values in its
database. Motivated by the approach in Costinot et al. (2016), missing values for price, production
and harvest areas in the FAO dataset are imputed by regressing the logarithm of each variable on
a set of fixed effects: country-crop fixed effects, time-crop fixed effects, country fixed effects, and
time fixed effects. Standard errors are clustered at the country-crop level. The imputation is based
on panel data covering the period from 1990 to 2021. For production and harvest area variables,
zeros are assigned when the entire set of observations for a given country-crop pair is either zero
or missing in the original panel data. For crop price data, a slightly modified approach is used.
First, missing values are imputed using the same set of fixed effects applied to the production and
harvest area variables, provided at least one observation exists for the country (identified by ISO3
code) and crop pair over the entire data period. If no data are available at the country-crop level,
the country-level fixed effects (and the corresponding country-crop level fixed effects) are replaced
with aggregated ISO fixed effects (here I termed ”iso-major”), and the regression is repeated to
impute missing values. This process is further continued by sequentially replacing iso-major fixed
effects with sub-region fixed effects and, subsequently, with region fixed effects until the missing
values are filled. The idea is to exploit the closest available data for imputation. The classifications
of iso-major, sub-region, and region are provided in Appendix 10.

WIOD — The labor intensity parameter for non-agricultural production (ξn) is obtained as the
share of labor compensation in total value added from the World Input-Output Database (WIOD)
in year 2014. The WIOD data primarily covers OECD countries, with limited representation of de-
veloping economies. For missing developing countries, the average labor share of the subregional
group to which the country belongs is used (see Table 10 for classification) if such data is avail-
able. When subregional averages are unavailable—primarily for African and ‘Central Asia’ coun-
tries—the average labor share of four observable low-income countries (India, Mexico, Turkey, and
Indonesia) is applied.
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D Details of Model Quantification

D.1 Solution Algorithm

The computational algorithm used to solve the sequential equilibrium similarly follows the ap-
proach in Caliendo et al. (2019). The model solution in this paper is obtained using GAMS (Gen-
eral algebraic modeling system) version 45.07 with CONOPT solver.

Step1) Initialization
Take the initial allocation of the observed economy (Lns

0 , π
nj
0 , s0, µ

ns,mz
−1 , Xn,m,j

0 ) and the converg-
ing sequence of exogenous time-varying fundamentals {Θ̇t}T

t=1 as given. Generate an initial guess
(i = 1) of the path {v̇ns(i)

t+1 }T
t=0.

Step2) Updating path of labor supply
Given µns,mz

−1 and i-th guess {v̇ns(i)
t+1 }T

t=0, generate a path of {µns,mz(i)
t }T

t=0 using equation (38). Next,
given Lns(i)

0 and path of {gn
t }T

t=0 and {µns,mz(i)
t }T

t=0, compute a path of {L̇ns(i)
t+1 }T

t=0 using equation
(39).

Step3) Solving the temporary equilibrium
Given the path of labor supply {L̇ns(i)

t+1 }T
t=0, solve the set of nonlinear equations (24)-(37) for each

period t ≥ 0. Constrained optimization solver CONOPT is used with the objective being minimiz-
ing the goods market residual ϵX(i)

t defined from equation (37) as follows:

ϵ
X(i)
t = max

n∈N ,j∈J

∣∣∣∣∣ ∑
m∈N

Xn,m,j
t+1 − (Ṙnj

t+1Ȧ
nj
t+1)θ(Φ̇n

t+1)1−θḢn
t+1

( ∑
m̃∈N

Xn,m̃,j
t

)∣∣∣∣∣ . (A.91)

Check if ϵX(i)
t < ϵX , where ϵX denotes the tolerance for market clearing condition.

Step4) Updating path of utility
Given the path of temporary equilibrium {Ċns(i)

t+1 }T
t=0, update the path of {u̇ns(i)

t+1 }T
t=0. Note that

v̇ns
T = 1 for a large enough T > 0. Given {u̇ns(i)

t+1 }T
t=0, update (i + 1)-th guess {v̇ns(i+1)

t+1 }T
t=0

backward using equation (40) from the terminal period T > 0.

Step5) Check convergence
Check if {v̇ns(i+1)

t+1 }T
t=0 ≃ {v̇ns(i)

t+1 }T
t=0 using the criteria as follows. Iterate through Steps 2 to 4 for

i = 1, 2, · · · until convergence. ∣∣∣∣∣∣ v̇
ns(i+1)
t+1 − v̇ns(i)

t+1

v̇ns(i+1)
t+1

∣∣∣∣∣∣ < ϵv. (A.92)
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D.2 Construction of Migration Flows

This section details the construction of expanded migration flow estimates at both the cross-country
and cross-sector levels. The analysis utilizes international migration flow estimates from Abel and
Cohen (2019), which provide data at the cross-country level for the period 1990-2015 in 5-year
intervals.24 The primary objective is to extend these cross-country migration flow estimates to
include cross-sector dimensions, as illustrated in Table 6. Expanding the matrix at the sector level
is crucial, particularly as it includes information on structural transformations between sectors, i.e.,
shifts from agriculture to non-agriculture, or vice versa.

Table 6: Expanding Migration Flow Estimates

t+1
n m

t
n
m

expand=⇒

t+1
n, A n, M m, A m, M

t

n, A
n, M
m, A
m, M

Notes: The rows represent the origin of migration flows at time t, while the columns represent the
destination of migration flows at time t+1. For instance, the element (n A, m M) refers to migration
flows from the labor market of country n in sector A at time t to the labor market of country m in
sector M at time t + 1.

Step 1) International Gross Migration Flows
The first step is to match international gross migration flows from Abel and Cohen (2019) with the
model. Recall the transition of labor supply from equation (39),

Lns
t+1 =

∑
m∈N

∑
z∈S

µmz,ns
t (1 + gm

t )Lmz
t . (A.93)

Note that we are provided with country-level migration flow estimates. Denoting the cross-country
migration flows from country m to country n as Lm,n

t+1 , and matching Lm,n
t+1 with data from Abel and

Cohen (2019), by definition, it follows:

Lm,n
t+1 =

∑
s∈S

∑
z∈S

µmz,ns
t (1 + gm

t )Lmz
t . (A.94)

Assuming population growth is realized at the end of the period, the cross-country migration flows
before population growth is given by:

Lm,n
t+1

(1 + gm
t ) =

∑
s∈S

∑
z∈S

µmz,ns
t Lmz

t , (A.95)

where the population growth rate is calculated as the difference between the birth rate and the death
rate, sourced from World Bank data. While agricultural population often have a higher birth rate

24Among the estimates provided by Abel and Cohen (2019), estimates using closed demographic accounting meth-
ods with pseudo-Bayesian method were employed.
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than population in non-agriculture, due to data limitations, the same population growth rate is ap-
plied to both sectors.

Step 2) International Cross-Sectoral Migration Flows
To construct international cross-sectoral migration flows, an additional assumption is introduced:
international cross-sector migration flows are assumed to be proportional to the sectoral population
compositions of the origin and destination countries, respectively. Denoting ens

t as the employment
share in country n sector s at time t, cross-country migration flows from labor market mz to labor
market ns before population growth is given by:

µmz,ns
t Lmz

t = emz
t ens

t Lm,n
t+1/(1 + gm

t ), (A.96)

where
∑

s∈S e
ns
t = 1 by definition. This assumption is applied exclusively to international mi-

gration flows. By doing so, half of elements in the expanded migration flow matrix can be filled.
While international cross-sector migration flows are constructed based on this assumption, their
impact on the results is likely to be negligible, given that gross international migration flows re-
main relatively small—below 1% at the global level, as depicted in Table 6. Instead, the focus is
on capturing domestic cross-sector migration flows, which play a more significant role in driving
structural changes in labor markets.

Step3) Domestic Sectoral Net Migration Flows
Given international cross-sector migration flows and population growth rates, domestic cross-sector
net migration flows can be recovered. Let us first focus on the population inflows based on popula-
tion at time t+ 1. The equation (A.93) can be decomposed into international inflows and domestic
inflows for the non-agricultural and agricultural sector respectively, as follows:

Ln M
t+1 =

∑
m ̸=n

∑
z∈S

µmz,n M
t (1 + gm

t )Lmz
t︸ ︷︷ ︸

Cross-border inflows

+µn A,n M
t (1 + gn

t )LnA
t + µn M,n M

t (1 + gn
t )Ln M

t︸ ︷︷ ︸
Domestic inflows

(A.97)

Ln A
t+1 =

∑
m̸=n

∑
z∈S

µmz,n A
t (1 + gm

t )Lmz
t︸ ︷︷ ︸

Cross-border inflows

+µn M,n A
t (1 + gn

t )LnA
t + µn A,n A

t (1 + gn
t )Ln A

t︸ ︷︷ ︸
Domestic inflows

, (A.98)

where the first component on the RHS is the international migration inflows into labor market nM
(or nA), while the second and third components together are domestic migration inflows. Similar
decomposition can be done for the population outflows based on the population at time t. For each
sector, population at time t prior to population growth is, by definition, given by:

Ln M
t =

∑
m̸=n

∑
z∈S

µn M,mz
t Ln M

t︸ ︷︷ ︸
Cross-border outflows

+µn M,n A
t Ln M

t + µn M,n M
t Ln M

t︸ ︷︷ ︸
Domestic outflows

(A.99)

Ln A
t =

∑
m ̸=n

∑
z∈S

µn A,mz
t Ln A

t︸ ︷︷ ︸
Cross-border outflows

+µn A,n M
t Ln A

t + µn A,n A
t Ln A

t︸ ︷︷ ︸
Domestic outflows

, (A.100)

where the first term on the RHS is the international migration outflows departing from labor market
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nM, and the second and third terms are domestic migration outflows.
Given the identity equations in inflows and outflows, domestic cross-sector net flows can be

recovered. Dividing equation (A.97) by (1 + gn
t ) on both sides and subtracting with equation

(A.99), it follows:

Ln M
t+1

(1 + gn
t ) − Ln M

t =
(
µn A,n M

t Ln A
t − µn M,n A

t Ln M
t

)
︸ ︷︷ ︸

=Pn
t

+


1

(1 + gn
t )

∑
m ̸=n

∑
z∈S

µmz,n M
t (1 + gm

t )Lmz
t︸ ︷︷ ︸

Cross-border inflows

−
∑

m ̸=n

∑
z∈S

µn M,mz
t Ln M

t︸ ︷︷ ︸
Cross-border outflows


(A.101)

Note that the first term on the RHS, defined as Pn
t =

(
µn A,n M

t Ln A
t − µn M,n A

t Ln M
t

)
, is domestic

cross-sector net flows. If Pn
t > 0, there is a positive net flow from agriculture to non-agricultural

sector within the country, and if Pn
t < 0, vice versa. Given cross-country migration flows from

equation (A.96), the domestic sectoral net flows Pn
t is obtained by:

Pn
t =

(
Ln M

t+1
(1 + gn

t ) − Ln M
t

)
−


1

(1 + gn
t )

∑
m ̸=n

∑
z∈S

emz
t en M

t Lm,n
t+1︸ ︷︷ ︸

Cross-border inflows

− 1
(1 + gn

t )
∑

m̸=n

∑
z∈S

en M
t emz

t Ln,m
t+1︸ ︷︷ ︸

Cross-border outflows


(A.102)

The above equation suggests that, domestic cross-sector net flows can be constructed such that
exactly captures observed changes of sectoral population over time. Note, however, that only the
net flows can be captured, not the level of cross-sector migration flows. In other words, in order
to identify the level of domestic migration flows from agriculture to non-agriculture, this approach
requires an additional information on the level of domestic migration flows from non-agriculture
to agriculture (or vice versa). While it is reasonable to expect that the share of migration flows
from non-agriculture to agriculture is relatively smaller than the opposite flows in most countries,
one cannot simply assume this flow to be zero. Such an assumption would not only misrepresent
the actual migration flows, but it may also prevent the model obtaining the sequential equilibrium
solution. Note that, under steady-state conditions, the inflow and outflow of population should be
balanced in every labor market, such that there are no changes in any labor markets over time. If
a labor market experiences only population outflows, with no inflows from either within or across
countries, its population will continuously decline over time and will never reach a steady state.

Step4) Domestic Sectoral Migration Flows
To recover the level of domestic sectoral migration flows, I obtain additional information on domes-
tic migration flows from non-agriculture to agriculture. Given the limited data availability for most
countries, I consider domestic sectoral flows in the U.S. as a reference. The Census Bureau’s March
Current Population Survey (CPS) provides individual-level data, including information on previous
year’s employment, industry, wages, and current employment status and industry at the time of the
survey. Following a similar approach to Artuç et al. (2010), I clean the data to construct migration
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flows. I focus on male respondents aged 25 to 65 who are currently employed and worked at least
26 weeks in the previous year. Individuals with zero wage and salary income are excluded, as well
as those in the top 99th percentile of wage and salary income. A worker’s industry is classified
as agriculture if it falls under ‘Crop production,’ ‘Animal production,’ ‘Forestry except logging,’
‘Logging,’ ‘Fishing, hunting, and trapping,’ or ‘Support activities for agriculture and forestry.’ This
definition of agriculture is broader than crop production itself, but is used to be consistent with the
definition of the agricultural sector in country-level macro data.

Using CPS survey, I construct the annual domestic migration flow matrix for each period, and
then multiply the five consecutive annual matrices to construct quinquennial domestic migration
flow matrix. Using data covering period 1990-2019, I construct quinquennial domestic migration
flow matrix for 1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014, 2015-2019. The table
7 presents the mean of quinquennial domestic migration flows for the period 1990-2019, showing
that, for non-agricultural workers, only 0.54% goes to the agricultural sector in the next period,
while 99.46% stays in the non-agricultural sector.

Table 7: Quinquennial Domestic Migration Flows in the US (1990-2019)

Ag Non-ag
Ag 0.5730 0.4270

(0.0898) (0.0898)
Non-ag 0.0054 0.9946

(0.0009) (0.0009)
Notes: Rows represent the origin sector and columns represent the destination sector. Each cell
shows the mean migration flow rates over 5-year intervals over the period 1990-2019, with standard
deviation in parenthesis.

Using US data as a reference, I assume that the level of the domestic sectoral migration flow
to be ϖ = 0.54% on the lower side for all countries.25 Specifically, if there is a positive domestic
net flows from agriculture to non-agriculture, i.e., Pn

t > 0, then the domestic migration flows
from non-agriculture to agriculture is set at ϖ = 0.54%. Then the level of domestic cross-sector
migration flows can be characterized as:

µn M,n A
t Ln M

t = ϖLn M
t

µn A,n M
t LnA

t = Pn
t + µn M,n A

t Ln M
t

(A.103)

The recovered share of domestic flows from agriculture to non-agriculture from this approach is
39.07% for period 2015-2019, which is comparable to the value 42.7% directly constructed from the
CPS individual data. Similarly, if there is a positive net flows from non-agriculture to agriculture,
i.e., Pn

t < 0, it follows:
µn A,n M

t LnA
t = ϖLnA

t

µn M,n A
t Ln M

t = µn A,n M
t LnA

t − Pn
t

(A.104)

25This assumption may not fully represent actual migration flows, as it imposes constant minimum flows for domestic
sectoral migration. However, despite its strictness, the assumption facilitates achieving sequential equilibrium by
preventing zero inflows in certain labor markets. Furthermore, this limitation is less concerning in the model, as these
flows are likely to be small for most countries, and, importantly, changes in wages are driven by total population
changes of each labor market. Therefore, what matters is the net migration flows, which is adequately captured by the
approach used here.
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After recovering µn M,n A
t Ln M

t and µn A,n M
t LnA

t , the flow of stayers can be also recovered based
on equation (A.97) and equation (A.98) as follows:

µn M,n M
t Ln M

t = Ln M
t+1

(1 + gn
t ) −

 1
(1 + gn

t )
∑

m̸=n

∑
z∈S

µmz,n M
t (1 + gm

t )Lmz
t + µn A,n M

t LnA
t

 (A.105)

µn A,n A
t Ln A

t = Ln A
t+1

(1 + gn
t ) −

 1
(1 + gn

t )
∑

m̸=n

∑
z∈S

µmz,n A
t (1 + gm

t )Lmz
t + µn M,n A

t LnA
t

 (A.106)

The expanded migration flow matrix is then fully constructed.
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D.3 Estimation of Migration Elasticity

This section describes the derivation of the moment condition used for estimating the migration
elasticity and the estimation strategies. I estimate the migration elasticity by closely following the
approach in Artuç et al. (2010) and Caliendo et al. (2019). The estimation of migration elasticity
relies on the expanded migration matrix constructed in the Appendix D.2.

Recall the equation (A.10),

Ξns
t = ν log

∑
m̃∈N

∑
z̃∈S

exp
(
βV m̃z̃

t+1 − ζns,m̃z̃

ν

)
. (A.107)

Substituting the above expression in to the equation (8), it follows

µns,mz
t =

exp
(
(βV mz

t+1 − ζns,mz)/ν
)

∑
m̃∈N

∑̃
z∈S

exp((βV m̃z̃
t+1 − ζns,m̃z̃)/ν)

= exp
(
(βV mz

t+1 − ζns,mz − Ξns
t )/ν

)
.

(A.108)

Taking a ratio between µns,mz
t and µns,ns

t and taking a log on both sides, it follows:

log(µns,mz
t /µns,ns

t ) = β

ν
(V mz

t+1 − V ns
t+1) − 1

ν
(ζns,mz − ζns,ns). (A.109)

Similarly, taking a ratio between µns,mz
t and µmz,mz

t and taking a log on both sides, it follows:

log(µns,mz
t /µmz,mz

t ) = −1
ν

(ζns,mz − ζmz,mz) − 1
ν

(Ξns
t − Ξmz

t ). (A.110)

Recall that our Bellman equation (7) is simply written using Ξns
t as follows:

V ns
t = uns

t + Ξns
t . (A.111)

Substituting (V mz
t+1 − V ns

t+1) using equation (A.111), and (Ξmz
t+1 − Ξns

t+1) using equation (A.110) into
the equation (A.109), it follows:

log(µns,mz
t /µns,ns

t ) = β

ν
(V mz

t+1 − V ns
t+1) − 1

ν
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= β

ν
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t+1) + β

ν
(Ξmz
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+ β
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(A.112)

Assuming that there’s no migration cost to stay in the same labor market, i.e., ζns,ns = 0, the above
equation leads to the following.

log(µns,mz
t /µns,ns

t ) = β

ν
(umz

t+1 − uns
t+1) + β log(µns,mz

t+1 /µmz,mz
t+1 ) − (1 − β)

ν
ζns,mz. (A.113)
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This is the moment condition equivalent to the one used in Artuç et al. (2010) and Caliendo et al.
(2019), but generalized for any utility uns

t+1. Substituting the logarithm utility uns
t = log(Cns

t ) into
the above equation, the regression equation of interest becomes

1
β

log(µns,mz
t /µns,ns

t ) = 1
ν

log
(
Cmz

t+1/C
ns
t+1

)
+log(µns,mz

t+1 /µmz,mz
t+1 )−(1 − β)

νβ
ζns,mz+υt+1, (A.114)

where υt+1 is the random error term realized at t+1. The coefficient 1/ν then captures the elasticity
migration flows, i.e., how much the migration flow (relative to staying in the same labor market)
responds to the changes in real consumption in the next period. Although the ideal model would
account for the bilateral migration costs ζns,mz, I impose the simplifying assumption that ζns,mz =
ζn,m for ∀s, z. Substituting the optimal consumption in equation (A.50) into the aggregate real
consumption Cns

t+1, then above equation leads to the following:

1
β

log(µns,mz
t /µns,ns

t ) − log(µns,mz
t+1 /µmz,mz

t+1 ) = 1
ν

log
(
Emz

t+1/E
ns
t+1

)
+Dm,n

t + υt+1, (A.115)

where the aggregate term Dn,m
t is captured by origin-destination-time fixed effects, absorbing the

preference parameters, price index, bilateral migration cost terms as follows.

Dn,m
t = 1

β
log

(
ϕmϕm(1 − ϕm)1−ϕm

ϕnϕn(1 − ϕn)1−ϕn

)
− 1
β

log
(
Pm

t+1
ϕm

P n
t+1

ϕn

)
− (1 − β)

βν
ζn,m. (A.116)
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E Additional Results

E.1 Baseline Scenario: Welfare Effects

Figure E.1: The Welfare Effects of Climate Change Shock RCP8.5

(a) Welfare Effects of Workers in Agriculture

(b) Welfare Effects of Workers in Non-agriculture

Notes: The above figures show the welfare impact of climate change RCP 8.5 scenario measured in the consump-
tion equivalent variation. Figure E.1a presents the welfare impact of RCP 8.5 compared to a no climate change
scenario for workers in the agricultural sector, while Figure E.1b depicts the corresponding impact for workers
in the non-agricultural sector.
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Figure E.2: The Welfare Effects: Counterfactual Migration Costs

Notes: This figure compares the correlation of welfare outcomes for agricultural workers under two
different counterfactual analyses. The y-axis represents the welfare effects of allowing baseline labor
mobility, while the x-axis represents the welfare effects of allowing only domestic sectoral labor
mobility.
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E.2 Sensitivity Test: Other Climate Scenarios

Figure E.3: The Welfare Effects: Climate Scenarios RCP8.5

Notes: The above figure illustrates the welfare effects of climate change shocks (RCP 8.5), relative to an economy
without such shocks, for the agricultural workers. The welfare effects are measured as the consumption equivalent
variation in percentage changes.
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Figure E.4: The Welfare Effects: Climate Scenarios RCP4.5

Notes: The above figure illustrates the welfare effects of climate change shocks (RCP 4.5), relative to an economy
without such shocks, for the agricultural workers. The welfare effects are measured as the consumption equivalent
variation in percentage changes.
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Table 8: Welfare Effects (%) of Climate Change RCP 8.5 (HadGEM2-ES)

(1) Both Shocks (2) Productivity Only (3) Multicropping Only
Ag workers NA workers Ag workers NA workers Ag workers NA workers

Africa
COD -0.316 -0.276 -0.147 -0.195 -0.169 -0.082
ETH-KEN 0.361 0.047 0.549 0.057 -0.190 -0.011
MDG -0.533 -0.171 -0.171 -0.061 -0.358 -0.111
Rest of (Lower) Northern Africa -1.014 -0.458 -0.734 -0.351 -0.285 -0.111
Rest of (Lower) Southern Africa 1.151 0.531 0.990 0.480 0.157 0.048
Rest of (Upper) Northern Africa -0.963 -0.076 -0.765 -0.069 -0.204 -0.008
Rest of (Upper) Southern Africa 0.060 -0.101 0.112 -0.102 -0.050 0.001
Rest of Eastern Africa -0.092 -0.087 0.063 -0.011 -0.155 -0.076
Rest of Middle Africa -0.110 -0.074 -0.025 -0.049 -0.086 -0.025
Rest of Western Africa -0.277 -0.104 -0.200 -0.083 -0.076 -0.021
TZA -0.115 -0.073 -0.046 -0.060 -0.068 -0.013

Asia
BGD -0.258 -0.030 -0.215 -0.038 -0.042 0.008
CHN 0.278 0.057 0.098 0.025 0.181 0.033
IDN -0.074 -0.035 0.020 -0.023 -0.093 -0.012
IND 0.207 -0.062 0.226 -0.061 -0.016 -0.001
IRN -0.319 0.035 -0.580 -0.005 0.263 0.041
JPN 0.192 0.020 0.050 0.007 0.142 0.013
KAZ 0.181 0.045 -0.011 0.024 0.193 0.021
KHM -1.144 -1.328 -1.094 -1.335 -0.049 0.008
KOR 0.742 0.032 0.180 0.007 0.571 0.025
LAO -0.119 -0.065 -0.087 -0.062 -0.033 -0.002
MMR -0.115 -0.085 -0.004 -0.060 -0.111 -0.024
MNG 3.855 0.198 2.444 0.122 1.443 0.076
MYS -0.013 -0.008 0.040 -0.005 -0.053 -0.003
NPL-BTN -0.061 -0.115 -0.078 -0.126 0.020 0.011
PAK -0.245 -0.041 -0.291 -0.063 0.049 0.022
PHL -0.206 -0.022 -0.047 -0.016 -0.158 -0.007
Rest of Central Asia 0.251 0.082 0.024 0.022 0.228 0.059
Rest of Western Asia -0.341 -0.021 -0.307 -0.019 -0.033 -0.001
THA -0.340 -0.089 -0.278 -0.086 -0.060 -0.003
TUR 0.041 0.016 -0.102 0.001 0.143 0.016
VNM -0.165 -0.023 -0.051 -0.015 -0.113 -0.009

Australia and New Zealand
AUS -1.233 -0.031 -1.026 -0.025 -0.210 -0.006
NZL 1.004 0.028 0.576 0.017 0.427 0.011

Europe
DEU -0.003 0.006 0.059 -0.000 -0.061 0.006
FIN 1.808 0.033 1.813 0.033 -0.004 -0.000
FRA -0.055 -0.019 -0.176 -0.021 0.121 0.001
GBR 0.047 0.004 0.091 0.003 -0.043 0.001
IBR -0.115 -0.014 -0.235 -0.019 0.121 0.006
ITA 0.667 0.022 -0.007 -0.004 0.675 0.027
NOR 3.102 0.044 1.816 0.027 1.263 0.016
POL -0.473 -0.012 -0.388 -0.012 -0.085 0.001
ROU 0.368 0.012 -0.230 -0.018 0.600 0.030
RUS 1.957 0.054 1.803 0.041 0.154 0.013
Rest of Eastern Europe -0.450 -0.009 -0.428 -0.020 -0.021 0.012
Rest of Northern Europe -0.057 0.009 0.026 0.007 -0.083 0.003
Rest of Southern Europe -0.003 0.005 -0.187 -0.016 0.186 0.022
Rest of Western Europe 0.107 0.000 0.078 -0.004 0.029 0.004
SWE 0.843 0.010 0.748 0.009 0.095 0.001
UKR -0.651 0.002 -0.574 -0.020 -0.077 0.023

Northern America
CAN 2.157 0.044 2.079 0.042 0.078 0.002
MEX 0.685 0.037 0.663 0.034 0.021 0.003
Rest of Central America -0.440 -0.034 0.016 -0.001 -0.449 -0.031
USA 0.004 0.005 -0.122 -0.000 0.127 0.006

South America
ARG -0.381 -0.051 -0.369 -0.041 -0.013 -0.010
BRA -0.712 -0.037 -0.402 -0.025 -0.314 -0.012
CHL 0.938 0.028 0.461 0.015 0.470 0.013
PER 0.112 0.070 0.106 0.052 0.006 0.017
Rest of Northern Latin America -0.100 -0.023 -0.021 -0.021 -0.078 -0.002
Rest of Southern Latin America -0.237 -0.038 -0.027 -0.020 -0.212 -0.019

World
Global 0.012 -0.012 0.032 -0.018 -0.019 0.006

Notes: Values represent percentage changes in welfare, measured in consumption equivalent variation. Model (1)
shows the welfare effects of the RCP 8.5 climate change scenario under current irrigation levels, with yield and
multicropping capacity shocks measured as irrigation-adjusted shocks. Model (2) presents the welfare effects
under the water scenario assuming all countries face climate change shocks as if they had full irrigation. Model
(3) shows the welfare effects under the water scenario assuming all countries face climate change shocks as if
they had no irrigation.
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E.3 Sensitivity Test: Other Migration Elasticities

Figure E.5: Sensitivity to Migration Elasticity (ν)

(a) Welfare Effects of Workers in Agriculture

(b) Welfare Effects of Workers in Non-agriculture

Notes: The above figures show the density distribution of welfare impact of climate change RCP
8.5 scenario measured in the consumption equivalent variation, across different migration elasticity
parameters. Figure E.5a and E.1b describe the welfare distribution of workers in agricultural sector
and non-agricultural sector, respectively.
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F Other Supplementary Data

F.1 List of Crops and Countries

Table 9 shows the list of 10 major crops considered in this study. The first column (GAEZ Major
Crops) provides the crop acronyms and names, which serve as the units of analysis in this paper.
The second column (FAO Trade Data) lists the corresponding trade items based on FAO classifi-
cations, while the third column (GAEZ Module 3) details the subcategories of corresponding crop
items based on GAEZ Module 3, which provides potential yield information.

Table 9: List of Major Crops

GAEZ Major Crops FAO Trade Data GAEZ Module 3
No. Code Name Code Name Code Name

1 RCW Rice 27 Rice
ricd Dryland rice
ricw Wetland rice

2 MZE Maize 56 Maize (corn)
hmze Highland maize (tropics)
lmze Lowland maize
tmze Temperate/sub-tropical maize

3 WHE Wheat 15 Wheat
swhe Spring wheat

wwhe
Winter, sub-tropical
and tropical highland wheat

4 RT1
Potato
and sweet potato

116 Potatoes wpot White potato
122 Sweet potatoes spot Sweet potato

5 SUC Sugar cane 156 Sugar cane sugc Sugar cane
6 SOY Soybean 236 Soya beans soyb Soybean
7 TMT Tomatoes 388 Tomatoes toma Tomato

8 OLP
Oil palm fruit
or its byproducts

254 Oil palm fruit
oilp Oil palm256 Palm kernels

257 Palm oil
9 RT2 Cassava 125 Cassava, fresh casv Cassava

10 BAN Bananas 486 Bananas bana Banana

Notes: When the potential yield information is available for multiple crops under GAEZ Module 3 for each
GAEZ major crop, I used the maximum value of crop yields.
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Table 10: List of Countries and Classifications

No. ISO-3 Code Country Full Name ISO-Major Code Sub-region Region
1 ETH Ethiopia ETKE

Eastern Africa

Africa

2 KEN Kenya
3 MDG Madagascar MDG
4 BDI Burundi

REAF
- Rest of Eastern Africa

5 RWA Rwanda
6 SSD South Sudan
7 UGA Uganda
8 DJI Djibouti
9 TZA Tanzania TZA
10 COD Congo DRC COD

Middle Africa

11 GAB Gabon

RMAF
- Rest of Middle Africa

12 CMR Cameroon
13 GNQ Equatorial Guinea
14 COG Congo
15 CAF Central African Republic
16 TUN Tunisia

RNAF1
- Rest of (Upper)
Northern Africa

Northern Africa

17 EGY Egypt
18 LBY Libya
19 DZA Algeria
20 MAR Morocco
21 TCD Chad

RNAF2
- Rest of (Lower)
Northern Africa

22 NER Niger
23 MLI Mali
24 SDN Sudan
25 ERI Eritrea
26 MRT Mauritania
27 MWI Malawi

RSAF1
- Rest of (Upper)
Southern Africa

Southern Africa

28 ZMB Zambia
29 AGO Angola
30 ZWE Zimbabwe
31 MOZ Mozambique
32 ZAF South Africa

RSAF2
- Rest of (Lower)
Southern Africa

33 LSO Lesotho
34 BWA Botswana
35 NAM Namibia
36 SWZ Eswatini
37 TGO Togo

RWAF
- Rest of Western Africa Western Africa

38 BFA Burkina Faso
39 BEN Benin
40 SLE Sierra Leone
41 GNB Guinea-Bissau
42 GHA Ghana
43 SEN Senegal
44 CIV Côte d’Ivoire
45 LBR Liberia
46 GIN Guinea
47 NGA Nigeria
48 KAZ Kazakhstan KAZ

Central Asia

Asia

49 AFG Afghanistan

RCAS
- Rest of Central Asia

50 UZB Uzbekistan
51 TKM Turkmenistan
52 KGZ Kyrgyzstan
53 TJK Tajikistan
54 CHN China CHN

Eastern Asia55 JPN Japan JPN
56 KOR South Korea KOR
57 MNG Mongolia MNG
58 IDN Indonesia IDN

South-eastern Asia

59 KHM Cambodia KHM
60 LAO Laos LAO
61 MMR Myanmar MMR
62 MYS Malaysia MYS
63 PHL Philippines PHL
64 THA Thailand THA
65 VNM Vietnam VNM
66 BGD Bangladesh BGD

Southern Asia

67 IND India IND
68 LKA Sri Lanka IND
69 IRN Iran IRN
70 BTN Bhutan NPBT71 NPL Nepal
72 PAK Pakistan PAK

Continued on the next page
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No. ISO-3 Code Country Full Name ISO-Major Code Sub-region Region
73 ARE United Arab Emirates

RWAS
- Rest of Western Asia Western Asia

74 AZE Azerbaijan
75 ISR Israel
76 IRQ Iraq
77 SAU Saudi Arabia
78 ARM Armenia
79 OMN Oman
80 KWT Kuwait
81 JOR Jordan
82 YEM Yemen
83 GEO Georgia
84 TUR Turkiye TUR
85 AUS Australia AUS Oceania Oceania86 NZL New Zealand NZL
87 POL Poland POL

Eastern Europe

Europe

88 CZE Czech Republic

REEU
- Rest of Eastern Europe

89 SVK Slovakia
90 HUN Hungary
91 BGR Bulgaria
92 BLR Belarus
93 MDA Moldova
94 ROU Romania ROU
95 RUS Russian Federation RUS
96 UKR Ukraine UKR
97 FIN Finland FIN

Northern Europe

98 GBR United Kingdom GBR
99 IRL Ireland GBR
100 NOR Norway NOR
101 ISL Iceland

RNEU
- Rest of Northern Europe

102 EST Estonia
103 LVA Latvia
104 DNK Denmark
105 LTU Lithuania
106 SWE Sweden SWE
107 ESP Spain IBR

Southern Europe

108 PRT Portugal IBR
109 ITA Italy ITA
110 SVN Slovenia

RSEU
- Rest of Southern Europe

111 GRC Greece
112 HRV Croatia
113 MNE Montenegro
114 BIH Bosnia and Herzegovina
115 SRB Serbia
116 ALB Albania
117 MKD North Macedonia
118 DEU Germany DEU

Western Europe

119 FRA France FRA
120 AUT Austria

RWEU
- Rest of Western Europe

121 BEL Belgium
122 CHE Switzerland
123 NLD Netherlands
124 MEX Mexico MEX

Central America
Northern America

125 BLZ Belize

RCAM
- Rest of Central America

126 CRI Costa Rica
127 PAN Panama
128 GTM Guatemala
129 NIC Nicaragua
130 SLV El Salvador
131 HND Honduras
132 CAN Canada CAN North America133 USA United States USA
134 ARG Argentina ARG

South America South America

135 BRA Brazil BRA
136 CHL Chile CHL
137 PER Peru PER
138 ECU Ecuador

RNLA
- Rest of Northern

Latin America

139 COL Colombia
140 SUR Suriname
141 GUY Guyana
142 VEN Venezuela
143 BOL Bolivia RSLA

- Rest of Southern
Latin America

144 PRY Paraguay
145 URY Uruguay
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