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Abstract

Climate change can affect agricultural production through land productivity and multicrop-
ping capacities, with effects largely heterogeneous across countries and crops. Given the
agricultural sector’s substantial contribution to both income and employment in many de-
veloping economies, evolving agro-climatic conditions have the potential to reshape labor
reallocation as well as agricultural production. I build and quantify a dynamic spatial gen-
eral equilibrium model incorporating farmers’ optimal crop choices, international trade, and
forward-looking household migration. Findings indicate that under RCP 8.5, the overall
global welfare effect on agricultural workers is modest, yet welfare effects vary substantially
across countries. Results also highlight that the general equilibrium effects of labor mobility
are nontrivial, and domestic structural transformation, in particular, plays a crucial role in
mitigating the adverse effects of climate change.
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1 Introduction

Climate change has heterogeneous impacts across regions and sectors, with agriculture stand-
ing out as a particularly vulnerable and concerning sector (e.g., Rudik et al., 2022; Nath, 2023;
Zappala, 2024). Given the sector’s significant role in both income and employment in many
developing economies1, it has emerged as a crucial agenda to understand the potential con-
sequences of climate change on agricultural sector. Specifically, climate change influences
agricultural production through two primary channels: yield and multicropping. The impact
on yields is highly heterogeneous across countries, especially given the current geographical
distribution of irrigation resources, with the potential to reshape patterns of comparative
advantage across countries and crops. Additionally, climate change can affect the capacity of
multicropping—the practice of growing crops more than once per year—which can influence
the effective size of harvested areas. On the labor market side, climate change may affect
labor reallocation through income shocks; yet, these adjustments are imperfect and are long-
term processes due to existing frictions. Furthermore, the labor reallocation due to climate
change is likely to interact with the underlying forces of structural transformation shaping
long-term economic growth, as historical patterns have indicated. While there has been a
large number of studies that attempted to evaluate the impact of climate change, a critical
gap remains in the literature connecting the fundamental economic forces between adapta-
tion in agricultural production and labor reallocation within a dynamic general equilibrium
framework.

To explore the impacts of climate change on agricultural production and the labor market,
I build and quantify a spatial dynamic general equilibrium model that incorporates three
critical market mechanisms: optimal crop choices (crop switching), international trade, and
labor mobility. First, representative farmers in each country can grow multiple crops on given
land and optimize their land allocation among crops in response to climate change shocks
and new market equilibrium crop prices. Second, as crops are traded internationally, an agro-
climatic shock in one country can propagate through global markets, influencing crop prices,
production, and consumption choices around the world. Third, households make a forward-
looking decision about relocating to a different labor market each time period, capturing labor
mobility across both countries and sectors— agriculture and non-agriculture. Labor markets
offering higher utility attract more households from other labor markets, but households
face bilateral migration barriers when moving across countries or switching sectors. The
quantitative model in this paper is built upon the framework of Eaton and Kortum (2002),
incorporates a heterogeneous land model following Sotelo (2020), and dynamic migration
decision with heterogeneous agents, as in Artuç et al. (2010) and Caliendo et al. (2019).

The general equilibrium framework allows us to capture both Ricardian (comparative
1The average employment share in the agriculture sector is 34.2% among non-OECD countries, while it

is 4.8% among OECD countries. The average GDP share of the agriculture sector is 15% among non-OECD
countries, while it is 2.5% among OECD countries. Author’s calculation is based on year 2020, using the
World Bank data.
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advantage) and Heckscher-Ohlin (relative factor abundance) effects in agricultural production
resulting from agro-climatic changes, accounting for substantial heterogeneity across countries
and crops. This analysis leverages detailed spatial data on agro-climatic conditions from the
Global Agro-Ecological Zones (GAEZ) v4 project, including information on potential yield,
multicropping capacity, and irrigation distribution around the world. The model is quantified
for 60 countries (regions), aggregating 145 countries around the world, and covers 10 major
crops, with simulation periods projected through the end of this century. Using dynamic hat
algebra developed in Caliendo et al. (2019), I find a transition path of the global agricultural
production model toward the sequential equilibrium, by expressing time-varying variables as
time differences. The equilibrium solution can be identified without estimating the levels
of large set of fundamental variables2 including country- and crop-level land productivities,
bilateral trade costs, and migration costs.

The model simulations offer valuable insights into the economic impacts of climate change
on agriculture and labor dynamics. The welfare analysis under the pessimistic climate sce-
nario RCP 8.5 reveals that the global aggregate impact of climate change on agricultural
workers is somewhat modest (0.013%), while there exists considerable spatial heterogeneity.
Higher-latitude countries, such as Canada, the U.S., Russia, and Northern Europe, generally
benefit, while countries in northern and middle of Africa are negatively affected. In Latin
America, Brazil and Argentina are projected to experience welfare losses, even though they
reallocate significant share of cropland from soybeans to maize over time. Also, countries with
high level of specialization experience the largest welfare effects: specifically, Mongolia and
Australia, both with over 90% of their land dedicated to a single crop, wheat, are expected
to see contrasting outcomes, with Mongolia achieving the greatest welfare gain (3.85%) and
Australia facing the largest loss (-1.23%). The model simulation reflects a gradual decline in
agricultural employment share for most countries over time, driven by domestic sectoral labor
mobility, capturing the salient feature of structural transformation. The findings here sug-
gests that, relative to previous studies that abstract from dynamic adjustments, the welfare
effects here are more moderate; with production, trade, and labor reallocation mechanisms
in place, the general equilibrium impacts of climate change on agriculture are less severe than
previous studies have indicated.

In a counterfactual exercise, I simulate a sudden shock to migration costs such that all or
some of bilateral migration costs become infinitely high, thereby restricting labor mobility.
This analysis suggests that welfare implications of labor mobility is substantial: the baseline
labor mobility scenario with cross-country and cross-sector mobility at current level of mi-
gration costs yields a global welfare effect of 14.27% for agricultural workers, compared to a
scenario with no mobility. Welfare effects are unevenly distributed across countries, with the
largest welfare gains are observed in countries such as Vietnam (42.7%), Philippines (30.7%),
and Bangladesh (26.5%), where there are large mobility flows out of the agricultural sec-
tor. I further consider a counterfactual scenario where international migration is prohibited

2The fundamental variable refers to the exogenous state variable in the literature (Caliendo et al., 2019).
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but only domestic cross-sector mobility is allowed, to separately evaluate role of structural
transformation within a country. The results indicate that the welfare effects of allowing
only domestic sectoral labor mobility are similar to those in the baseline scenario, aligning
with the empirical observation that a large share of mobility is through domestic sectoral
switches rather than international migration. These findings suggest that welfare gains from
labor mobility for workers in the agricultural sector are primarily driven by domestic sec-
toral mobility rather than by international migration, reflecting high barriers to international
migration. Although the counterfactual exercises consider extreme cases of migration costs,
they provide key insights: addressing prevalent sectoral income inequality between agricul-
ture and non-agriculture worldwide remains an important task alongside efforts to tackle
climate change, and facilitating domestic structural transformation could play a crucial role
in mitigating potential negative welfare impacts of climate change for agricultural workers.

To the best of my knowledge, this is the first dynamic spatial general equilibrium model
that evaluates the impact of climate change on global agricultural production, incorporating
forward-looking labor mobility within a multi-country, multi-crop production framework. In
particular, the model simulation captures heterogeneous forces and frictions of structural
transformation across countries by exactly capturing the domestic sectoral net flows from
observed population data. Previous studies assessing the effects of climate change on agri-
culture abstract from critical forces of labor reallocation (Costinot et al., 2016; Gouel and
Laborde, 2021) or focus on certain regions (e.g., Pellegrina, 2022; Conte, 2022). This paper
fills a gap in the literature by explicitly addressing the role of labor mobility alongside other
adjustments in agricultural markets, including crop switching and international trade. Ad-
ditionally, the quantification approach in this study captures rich heterogeneity in climate
change shocks across countries and crops, incorporating both yield and multicropping ca-
pacity shocks, evaluated based on current irrigation distributions. This approach extends
beyond the focus on potential yield alone, as seen in previous studies (Costinot et al., 2016;
Gouel and Laborde, 2021).

Related Literature — This study relates to and contributes to several branches of litera-
ture. Firstly, this study closely connects to the literature on heterogeneous land models in a
spatial general equilibrium framework (e.g., Costinot et al., 2016; Gouel and Laborde, 2021;
Sotelo, 2020; Pellegrina, 2022; Conte, 2022; Farrokhi and Pellegrina, 2023). These studies
have incorporated the modern Ricardian trade framework à la Eaton and Kortum (2002) to
generate predictions for land shares across crops, by exploiting high-resolution crop-yield data
from the GAEZ project. In particular, Costinot et al. (2016) and Gouel and Laborde (2021)
analyze the impact of agricultural productivity shocks under climate change and emphasize
the role of crop switching and international trade as measures to mitigate adverse welfare
impacts. This study closely relates to and complements Costinot et al. (2016) and Gouel and
Laborde (2021) by explicitly addressing labor mobility and structural transformation, and
by enriching the model quantification. Recent studies by Pellegrina (2022) and Conte (2022)
develop spatial general equilibrium models that incorporate both trade and migration. These
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studies are set in a static context and focus on a single country, Brazil (Pellegrina, 2022), or

a continent, sub-Saharan Africa (Conte, 2022).

This study also contributes to the literature analyzing the interactions between climate

change and migration. In particular, recent advancements in tractable quantitative models

and computational methods (e.g., see Redding, 2016; Redding and Rossi-Hansberg, 2017;

Caliendo et al., 2019; Kleinman et al., 2023) have spurred rapid growth in the literature on

dynamic spatial general equilibrium models. These studies quantify the impact of climate

change in a spatial general equilibrium model with internal or international forward-looking

migration, focusing on di�erent aspects of the economy: investment decision and techno-

logical di�usion (Desmet and Rossi-Hansberg, 2015; Desmet et al., 2018, 2021); sectoral

and geographical specialization (Conte et al., 2021); education-speci�c migration (Burzy�nski

et al., 2022); endogenous use of fossil fuels and clean energy (Cruz, 2023); sectoral produc-

tivity and local amenity shocks (Rudik et al., 2022); impact of storms and extreme heat

waves (Bilal and Rossi-Hansberg, 2023). In these studies, agriculture is often considered an

aggregate sector or a part of the aggregate economy, without addressing the adjustment role

of crop choices within the agriculture sector. Another group of studies empirically assesses

the impact of weather shocks on internal or international migration patterns (e.g., Cattaneo

and Peri, 2016; Peri and Sasahara, 2019).

Additionally, this study connects to the classical macroeconomics literature on structural

transformation of an economy (e.g., see Herrendorf et al., 2014). In the literature, it has been

well-understood that sectoral allocation of labor appears to be distorted in many developing

economies (Vollrath, 2009; Gollin et al., 2014), and that labor market frictions are the key

contributor prohibiting the labor reallocation from agriculture to non-agriculture, resulting

an excessively large share of labor remaining in the agricultural sector with low labor pro-

ductivity (Restuccia et al., 2008; Tombe, 2015). While there is a relatively large body of

literature analyzing labor reallocation from agriculture to non-agriculture sector or rural to

urban areas within speci�c countries (e.g., Herrendorf et al. (2013) for the US; Tombe and

Zhu (2019); Adamopoulos et al. (2024) for China; Munshi and Rosenzweig (2016); Imbert and

Papp (2020) for India; Lagakos et al. (2023) for Bangladesh)3, there are relatively fewer stud-

ies that examine structural transformation in labor markets across many countries around the

world. An exception is Cruz (2023), who develops a structural model incorporating sectoral

reallocation, dynamic labor mobility, and an endogenous climate system, where temperature

increases have heterogeneous impacts on productivity across regions and sectors. This study

also considers bilateral migration costs across region- and sector-speci�c labor markets but

takes a di�erent approach to constructing its migration ow matrix.4 Nath (2023) also ex-

amines potential sectoral reallocation between agriculture and non-agriculture due to climate

3For a more extensive review of the literature on structural transformation out of the agricultural sector,
see Gollin (2023).

4Cruz (2023) constructs a migration ow dataset encompassing international and intranational migration
ows, with six sectors and 287 regions worldwide. The study �rst constructs international and intranational
migration stocks and then decomposes them to create region-sector migration stocks. Given the migration
stock at region-sector pair, the study employs a Poisson regression model to estimate migration ows.
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change in a static framework but abstracts from mobility costs across space and sectors.

2 Background and Motivation

This section briey introduces the data and the empirical patterns that motivate the selection

of model components. To assess the impact of climate change on future agricultural produc-

tion, this study utilizes projections from the GAEZ version 4 dataset, provided by the FAO.

The GAEZ dataset includes projections of agro-climatic potential yield, potential for multiple

cropping practices, and the current geographical distribution of irrigation availability, all at

a 5 arc-minute spatial resolution5. Following Costinot et al. (2016), I use the climate model

HadGEM2-ES and adopt the pessimistic scenario RCP 8.5 as the baseline scenario.6 This

paper considers 10 major crops and 60 countries (regions) covering 145 countries globally.

Potential Yield | The GAEZ data provides information on agro-climatic potential yield,

evaluating agro-climatic environments based on climatic factors such as precipitation and

temperature, as well as soil and terrain conditions (Fischer et al., 2021). The potential yield

is assessed under a high input scenario, including full mechanization, management system

and optimal use of intermediate inputs such as pesticides and fertilizers, thereby providing

the upper limit of agronomically feasible production under speci�c climatic conditions. The

agro-climatic potential yield estimates are provided for all terrains on Earth for historical,

current, and future potential climate scenarios, irrespective of whether the land is currently

used for growing certain crops or not, and are provided for two water supply scenarios,

irrigation and rain-fed conditions.

The potential for climate change to reshape comparative advantage across countries and

crops in agricultural production has been well-emphasized by Costinot et al. (2016). As cli-

mate change alters agro-climatic potential yields, some countries may experience an (either

absolute or relative) increase in potential yield, while others may experience a decline. Simi-

larly, within a country, certain crops may experience an (either absolute or relative) increase

in potential yield, whereas others may see a decrease. These shifts in potential yield are likely

to alter the comparative advantage in agricultural production from a traditional Ricardian

perspective, inuencing land allocation and driving countries to allocate more land to crops

where they gain a relative comparative advantage.

Stable water supply is a critical factor inuencing potential yields. Additionally, there is

large spatial heterogeneity in availability of irrigation facilities across croplands, which further

a�ects how countries will be hit di�erently from climate change. See Figure C.1 for the share

of croplands with irrigation by country. I use current irrigation distribution data from the

GAEZ dataset to adjust potential yields based on irrigation availability and aggregate the

results at the country level, which is the unit of analysis for this study. See appendix C.1 for

5This is approximately 9 x 9 km at the equator.
6The future projection data are based on �ve climate models7 and four climate scenarios (RCP 2.6, 4.5,

6.0, and 8.5), with projections extending to the end of the century (Fischer et al., 2021).
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details.

Figure 1a summarizes future changes in potential yield for the highest-revenue crop in

each country under the RCP 8.5 scenario, depicting the percentage change in potential yield

by 2100 relative to the the year 2020. For example, the �gure shows that maize, China's

highest-revenue crop in the current period, is expected to see an increase in potential yield,

while Brazil's highest-revenue crop, soybeans, is expected to experience a decrease in poten-

tial yield. This �gure suggests signi�cant heterogeneity across countries in future potential

yield changes, suggesting that some countries may be at higher risk if cropland allocation

is not adjusted to account for the new agro-climatic environment, particularly given current

irrigation availability.

Multicropping and Harvested Areas | It is important to note that the size of physical

cropland areas can di�er signi�cantly from the size of harvested areas|the total area of

croplands actually harvested|due to multicropping practices, where crops are grown multiple

times throughout the year. For example, some regions in Southern Asia and Latin America

may cultivate crops up to three times per year. As highlighted by Gouel and Laborde (2021),

neglecting multicropping practices can introduce substantial bias into model predictions.

Previous studies, such as Costinot et al. (2016) and Gouel and Laborde (2021), examined

productivity shocks from climate change but were unable to properly address the gap between

physical and harvested areas due to limited data availability. The latest version of the

GAEZ dataset (version 4) includes multicropping zone information, enabling us to distinguish

between physical and harvested areas more accurately.

The GAEZ project classi�es all lands on Earth into 9 zones based on multicropping

potential, ranging from zero cropping to triple rice cropping. Similar to the agro-climatic

potential yield estimates, multicropping potential is assessed solely based on agro-climatic

characteristics, such as the length of growing periods and temperature and is provided for

two di�erent water scenarios|irrigation and rain-fed conditions|covering both historical

and future periods. Multicropping may involve planting di�erent crops (e.g., maize and

bean) or growing identical crops (e.g., rice) sequentially in the same �eld after harvest.

While practical multicropping may involve speci�c combinations of crops planted together

to optimize production, the current version of the GAEZ data provides multicropping zone

information only as the number of potential multicroppings for all crops, except for rice.

Given this data constraint and to reduce the complexity of model quanti�cation, I have

simpli�ed the multicropping zone information by regrouping the 9 zones into 4 classi�cations,

ranging from zero to triple cropping, irrespective of crop types. Similar to potential yield,

I use the irrigation distribution data to adjust multicropping potentials based on current

irrigation availability. See appendix C.2 for details of data construction.

Essentially, climate change impacts multicropping potential, which could a�ect the e�ec-

tive size of harvested areas, assuming that the size of physical areas remains constant over

time. Thus, the climate change impact on agricultural production involves not only changes

in relative productivity (Ricardian) but also relative factor abundance (Heckscher-Ohlin).
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Figure 1b displays the percentage change in multicropping potential by 2100 compared to

2020. Countries in the mid-latitudes of the northern hemisphere are expected to see an

increase in multicropping potential, while most countries in the southern hemisphere are

projected to experience a decrease.

Structural Transformation | The �nal empirical pattern motivating the model choice is

structural transformation in the labor market. Structural transformation broadly refers to

the reallocation of economic activity or resources across sectors{agriculture, manufacturing,

and services{ in the process of economic development (Herrendorf et al., 2013, 2014). A

central feature of this process is reallocation of the labor force, typically from less productive

sectors (e.g., agriculture) to more productive sectors (e.g., manufacturing or services), often

captured by changes in employment shares. Figure 2a summarizes the historical transition

in the share of agricultural employment, aggregated at the sub-regional level, indicating a

widespread decline in agricultural employment over the past 30 years (1990{2020). Develop-

ing economies with previously higher shares of agricultural employment, particularly in Asia

and Africa, have experienced a rapid decline, while developed economies have seen a more

gradual decrease, as their agricultural employment share is already relatively low. However,

not all developing economies with a high share of agricultural employment have experienced

declining trends at the same pace, indicating the existence and potential heterogeneity in the

barriers associated with structural transformation out of agriculture. The evidence on the

barriers of structural transformation has been also documented in previous literature (e.g.,

Restuccia et al., 2008; Herrendorf and Schoellman, 2018).

While there is no straightforward consensus on the driving force of structural transfor-

mation8, structural transformation is closely related to the income gap between sectors. To

see if this relationship exists, I run a simple regression as follows:

yit = � log(x it ) + D i + D t + � it ; (1)

where yit is the share of domesticnet migration ows from agriculture to non-agriculture

(with 5-year intervals)9, and log(x it ) denotes the log ratio of per capita income between non-

8In earlier closed-economy models, such as the Solow-Swan framework (Solow, 1956; Swan, 1956), any
income-improving economic shock, including agricultural productivity, combined with non-homothetic pref-
erences|where the income elasticity for agricultural goods is less than one|leads to a decline in both
agricultural employment and the agricultural sector's value-added share. In open-economy models, however,
structural transformation may not be explained by productivity growth. For instance, Matsuyama (1992)
demonstrates that countries with relatively high agricultural productivity may fully specialize in agricultural
production, without experiencing a contraction in the agricultural sector. Gollin (2023) further emphasizes
that the e�ect of an agricultural productivity shock on the agricultural employment share depends critically
on the speci�c country and crop. In cases where a country experiences a productivity shock in crops with high
global demand and prices, the shock may result in expanded production and an increase in the agricultural
sector's value-added share. Conversely, if the crop primarily serves inelastic local demand, the productivity
shock may lead to lower prices, potentially reducing the agricultural sector's value-added. Whether such a
productivity shock increases or decreases agricultural employment may also depend on the labor intensity of
the crops involved. For a more comprehensive review of the relevant literature, see e.g., Gollin (2023).

9For domestic net migration ows, a positive value indicates a net movement of people from the agricultural
sector to the non-agricultural sector, while a negative value signi�es the reverse.
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agricultural and agricultural workers (calculated as 5-year averages), de�ned as the log of

GDP per capita in the non-agricultural sector divided by GDP per capita in the agricultural

sector. This equation is estimated after controlling for country (D i ) and year (D t ) �xed

e�ects, using panel data for 60 countries (regions) from 1990 to 2015 at 5-year intervals. For

details on the construction of domestic net migration ows, see Appendix D.2. In �gure 2b,

the slope (� ) depicts this relationship between the income gap and structural transformation

through migration ows out of agriculture, by partialling out the country and year �xed e�ects

from both the dependent and independent variables. The results are clear and intuitive: a

larger income gap between sectors is positively associated with a higher share of workers

transitioning out of agriculture. This aligns with the classical view that labor reallocation

should eventually lead to equalization of marginal product of labor across sectors|even

though income per capita does not exactly correspond to the marginal product of labor, they

are closely related|if there are no barriers across sectors. Furthermore, these �ndings suggest

that sectoral income shocks from climate change have the potential to inuence structural

transformation; In a country where income from agricultural sector becomes relatively less

attractive due to climate change, the force driving transformation out of agriculture may

become stronger. Conversely, if the agricultural sector becomes more attractive, the force of

structural transformation may weaken.

These empirical patterns together highlight the importance of incorporating labor mo-

bility when assessing long-term impacts of climate change, and rationalizes the model choice

of labor mobility as a dynamic discrete choice problem �a la Artu�c et al. (2010) and Caliendo

et al. (2019). In the model, labor mobility is considered in both spatial (cross-country) and

sectoral (cross-sector) dimensions, where the relative income gap (through utility) drives

population ows, and households encounter frictions when changing either country or sector.

Among these ows, domestic cross-sector mobility from agriculture to non-agriculture, in

particular, captures structural transformation. Although the term migration is often asso-

ciated with cross-country population ows, I refer to all labor ows as migration, which is

consistent with the literature.

3 A Quantitative Structural Model

This section presents a dynamic spatial model to evaluate the general equilibrium impact

of agricultural productivity shocks induced by climate change, incorporating three crucial

aspects of market adjustment mechanisms: farmers' optimal crop choice, international trade,

and labor reallocation. Essentially, the static component of agricultural production builds

upon the heterogeneous land model in Sotelo (2020), while the dynamic component of labor

mobility follows Caliendo et al. (2019). The productivity shock on agriculture is expected to

be highly heterogeneous across countries and even across crops within a single country, poten-

tially resulting in large-scale variation in comparative advantages around the world. Farmers

in each country will re-optimize their choice of crop production such that their choice maxi-
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mizes the return to land, with crop prices being adjusted through international crop markets.

Moreover, factor intensities of crop production vary signi�cantly across countries and crops,

adding another layer of complexities to production adjustments. Furthermore, countries

with severely negative agricultural productivity shocks may experience a reduction in in-

come for households working in agricultural sector, altering the forces of labor reallocation

across regions and sectors. The quantitative structural framework in this paper allows us to

study the general equilibrium e�ects resulting from interactions of the crop-level production

adjustments, market adjustments through international trade, and labor dynamics.

3.1 Environment

Consider a world economy consisting ofN countries, where each country's economy is divided

into two output sectors: agriculture (A ) and non-agriculture (M ). Countries are indexed by

n 2 N � f 1; � � � ; N g, and the sector is indexed bys 2 S � f A ; M g. In the agricultural

sector, labor, land, and intermediate inputs are used to produced crop productsj 2 J �

f 1; � � � ; Jg, whereJ is a set of crops. The non-agricultural sector consists of a single good

j 2 J o � f 0g, which is an aggregate of all other products and serves as a numeraire. The

production of non-agricultural goods requires labor and structure inputs. Time is discrete

and denoted byt = 0; 1; 2; � � � .

The endogenous state variable considered in this model is populationLns
t for each labor

market of country-sector pair. The initial allocation of population Lns
0 is taken as given.

Apart from labor, each country is endowed with an exogenous supply of other production

inputs: The land in country n is comprised of a continuum of heterogeneous plots indexed

by ! 2 
 n
t , where 
 n

t is the set of plots in countryn. The total amount of agricultural land

is denoted byH n
t =

R

 n

t
d! . The intermediate inputs M n

t used for crop production includes

fertilizers, pesticides, the use of mechanization, etc., and the structure input is a composite

of local inputs, both of which are considered to be supplied exogenously in each country.

The model consists of four types of agents. In each labor market, there are households

maximizing their lifetime utility by consuming goods and making dynamic migration decisions

each period. Each household inelastically supplies one unit of labor and receives a competitive

market wage from the local labor market. Local farmers produce crop products by hiring

labor, land, and intermediate inputs from the local market. Non-agricultural products are

also produced by local �rms that hire labor and structure inputs from the local market. All

factor and output markets are assumed to be perfectly competitive, resulting in zero pro�ts

for local farmers and �rms. Finally, local governments, owning land, intermediate inputs,

and structure inputs in each country, redistribute rental revenues to households residing in

each country.

9
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3.2 Prices and wages

In country n, the local price of goodj is denoted bypnj
t . The rental rate of plot ! for crop

j in country n is r nj
t (! ), while the rental rates of intermediate input and structure input are

zn
t and �n

t , respectively. Each sector within a country has its own market wages,wn A
t and

wn M
t for agricultural sector and non-agricultural sector, respectively.

3.3 International Trade

Trade is subject to a standard iceberg cost� m;n;j
t � 1, such that � m;n;j

t units of products need

to be produced and shipped from regionm for one unit to be consumed in regionn. Then

no-arbitrage requires:

pm;n;j
t = � m;n;j

t pmj
t ; (2)

wherepmj
t is the local price of productj in origin country m. Note that, by de�nition, the

trade value of goodj imported from regionm to n is X m;n;j
t = � m;n;j

t pm;j
t cm;n;j

t , wherecm;n;j
t

is the consumption of goodj in region n imported from regionm. For the case of domestic

consumption, the iceberg trade cost is simply set to be� n;n;j
t = 1.

3.4 Preferences

Households have logarithmic utilityuns
t = log( Cns

t ), where Cns
t is an aggregate consumption

of households located in countryn and working for sectors. The aggregate consumptionCns
t

is de�ned as:

Cns
t =

�
cns;A

t

� � n �
cns;M

t

� 1� � n

; (3)

where cns;A
t and cns;M

t are agricultural and non-agricultural consumption, respectively, and

� n is a preference parameter capturing the expenditure share of the agricultural consumption

in country n.

Agricultural consumption is a CES composite of various crop products with its associated

aggregate price index given by:

cns;A
t =

0

@
X

j 2J

(� n;j )1={ (cns;j
t )({ � 1)={

1

A

{ =({ � 1)

Pn
t =

0

@
X

j 2J

� n;j (Pnj
t )1� {

1

A

1=(1� { )

;

(4)

wherecns;j
t is the consumption of cropj , and Pnj

t is a consumption price of cropj in country

n. Here, � n;j
t � 0 is a preference parameter for goodj in region n, and { > 0 is the elasticity

of substitution between di�erent crop products.

The consumption of each crop product is assumed to be an Armington composite of the

given product from di�erent origins (Armington, 1969). Accordingly, cns;j
t and its associated

10
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price index are given by:

cns;j
t =

 
X

m2N

(� m;n;j )1=� (cm;ns;j
t )(� � 1)=�

! �= (� � 1)

Pnj
t =

 
X

m2N

� m;n;j (pm;n;j
t )1� �

! 1=(1� � )

;

(5)

wherecm;ns;j is the consumption of cropj imported from country m, consumed by a house-

hold in country n working for sectors, and pm;n;j
t is the import price of crop j from origin

country m in the destination country n. The parameter � m;n;j � 0 captures preference for

crops imported from countrym and consumed by countryn, and � > 0 is the elasticity of

substitution between crop products from various origins. The Armington assumption con-

siders agricultural products from di�erent countries as imperfect substitutes, despite their

often homogeneous nature. This CES-type speci�cation is useful and has been adopted in

previous studies, as it simpli�es the problem by eliminating the need to determine whether a

country is a net exporter or importer, as well as its trading partners (Costinot et al., 2016).

3.5 Household Migration

The migration decision of households is a dynamic discrete choice problem following Artu�c

et al. (2010) and Caliendo et al. (2019). For each country-sector pair, the labor market con-

sists of a massLns
t of households at the beginning of timet. Each household inelastically

provides one unit of labor, receives a competitive market wagewns
t , and make consumption.

At the end of each period, households have an option to relocate to a di�erent labor mar-

ket, but there is a publicly known migration costs� ns;mz � 0, capturing spatial and sectoral

reallocation frictions. Households also learn about their idiosyncratic preference shock� mz
t ,

which will be realized for any potential countrym and sectorz they move to. With com-

plete information and forward-looking behavior, households optimally choose a labor market

maximizing their expected lifetime utility at a discount factor � , given future realizations

of idiosyncratic shocks and migration costs. Then the household's dynamic discrete choice

problem is expressed as:

vns
t = uns

t + max
m2 N;z 2S

n
� Et (vmz

t+1 ) � � ns;mz + �� mz
t

o
; (6)

where vns
t is lifetime utility of the household in country n evaluated at time t, and � is a

parameter scaling the idiosyncratic shock.

Following the standard assumptions in dynamic discrete choice literature, idiosyncratic

shock � mz
t follows a Type-I extreme value distribution (Gumbel) with mean zero, and is

independently and identically distributed across individuals, regions, sectors, and time. Then

11



Draft version: November 10, 2024

the household's dynamic problem can be rewritten as:

V ns
t = uns

t + � log

 
X

m2N

X

z2S

exp

 
�V mz

t+1 � � ns;mz

�

!!

; (7)

whereV ns
t � Et (vns

t ) is the expected lifetime utility of the household over a vector of prefer-

ence shock� t = f � mz
t gm2 N; z 2S . Exploiting the properties of extreme value distributions, the

migration share of households from labor marketns to mz is derived as:

� ns;mz
t =

exp
�
(�V mz

t+1 � � ns;mz )=�
�

P

~m2N

P

~z2S
exp((�V ~m ~z

t+1 � � ns; ~m ~z)=� )
: (8)

The above expression for migration share suggests that country-sector pairs with higher

expected lifetime utility, net of migration costs, attract a larger fraction of movers. Also, 1=�

implies the migration elasticity governing how much migration share responds to the relative

di�erences in the expected lifetime utility net of migration costs. As the migration elasticity

1=� approaches zero, the migration does not respond at all to relative di�erences in lifetime

expected utility across labor markets. Conversely, when the migration elasticity 1=� goes to

in�nity, implying there is no heterogeneity in idiosyncratic shocks, the migration will fully

respond to relative di�erences in lifetime expected utility such that there is no di�erences in

lifetime expected utility across all labor markets.

At the end of time t, but before the migration happens, the population in each country

n grows at an exogenous growth rategn
t .10 Provided with the migration share, the evolution

of the labor supply in the next period is given by:

Lns
t+1 =

X

m2N

X

z2S

� mz;ns
t (1 + gm

t )Lmz
t : (9)

3.6 Agricultural Production

The production component of the model closely follows Sotelo (2020) and di�ers from Costinot

et al. (2016) and Gouel and Laborde (2021) in some key aspects. In Costinot et al. (2016)

and Gouel and Laborde (2021), Leontief production technology over land and labor is as-

sumed, without allowing for substitution between inputs, and total factor productivity is

heterogeneous within and across countries. In this study, the model assumes Cobb-Douglas

technology with heterogeneous land productivity, allowing for substitution of input factors

between land, labor, and intermediate inputs. Additionally, this study considers the unit of

land input as the harvested area to account for multicropping practices, whereas physical

land areas was used for the unit of land input in previous studies.

10The timeline of dynamic process is as follows. In the beginning of each timet, the population for each
labor market L ns

t is given. Then production occurs within each labor market, workers collect their wages, and
learn about their idiosyncratic shock � mz

t for all potential labor markets they can move to. After population
growth is realized, workers migrate to their chosen labor market.

12
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Production Technology | Crop production features a Cobb-Douglas technology with

constant returns to scale that combines labor, land, and intermediate inputs. In countryn,

the quantity of a crop j 2 J produced on a plot! is given by:

qnj
t (! ) = B nj

�
`nj

t (! )
� � nj �

mnj
t (! )

� � nj �
hnj

t (! )Anj
t (! )

�  nj

; (10)

where`nj
t (! ) is the labor input, mnj

t (! ) is the intermediate input (e.g., fertilizers, pesticides,

and machinery), andhnj
t (! ) is the land input. The parameters� nj ; � nj ;  nj denote factor

intensities of labor, intermediate, and land inputs, respectively, with a constraint of� nj +

� nj +  nj = 1. Each plot ! is heterogeneous in land productivity, which is represented by

Anj
t (! ) � 0. The parameterB nj captures country- and crop-speci�c production e�ciencies

and is exogenous and time-invariant.

Following the Ricardian formulation �a la Eaton and Kortum (2002), Anj
t (! ) � 0 is as-

sumed to be independently and identically drawn from a Fr�echet distribution for each (n; j; ! ),

with shape parameter� > 1 and scale parameter �Anj
t . The scale parameter is de�ned such

that Anj
t = E[Anj

t (! )] and � � �(1 � 1
� )� 1, where �( �) denotes the Gamma function. Then

the joint distribution of productivities of di�erent crops is obtained by:

Y

j 2J

Pr
�
Anj

t (! ) � aj
�

= exp

0

@�
X

j 2J

 
aj

� Anj
t

! � �
1

A :

With a Fr�echet distribution, the shape parameter � > 1 governs the dispersion of land

productivities within each country, with a higher value denoting smaller heterogeneity in

land productivity. The scale parameter �Anj
t > 0 governs the overall level of e�ciency in

producing a particular crop in each plot, with a higher value denoting a higher productivity

level. If a crop j cannot grow in country n, Anj
t is set to 0.

Pro�t Maximization | The representative farmer in country n hires labor and land from

the input market and decides which crops to grow in each plot such that its pro�t is maxi-

mized. Then the pro�t maximization problem of the farmer is given by:

max
`nj

t (! );m nj
t (! );hnj

t (! )

JX

j =1

pnj
t qnj

t �
JX

j =1

Z


 n

�
wn;A

t `nj
t (! ) + zn

t mnj
t (! ) + r nj

t (! )hnj
t (! )

�
d!

s.t. qnj
t =

Z


 n
B nj

�
`nj

t (! )
� � nj �

mnj
t (! )

� � nj �
hnj

t (! )Anj
t (! )

�  nj

d!;

Under perfect competition, pro�t maximization results in zero pro�t for farmers. The di�er-

ence between crop revenue and the combined input costs for labor and intermediate inputs

is exactly equal to the rental cost of land. Since the land market is also competitive, farmers

choose a crop that generates the highest rental rate of land. In other words, the pro�t max-

imization problem for crop production is equivalent to a discrete choice problem in which

farmers choose a crop maximizing land rent in a given plot! .

The rental rate of land can be determined in two steps. First, one can solve the cost

13
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minimization problem to obtain the cost function of producing a given amount of crop.

Second, by exploiting that the marginal cost of production is equal to the crop price under

perfect competition, a relation can be derived between rental rates and crop prices. Then

land rent from the production of cropj in parcel ! is obtained by:

r nj
t (! ) = Rnj

t Anj
t (! ); (11)

whereRnj
t is the rental rate per e�ciency unit of land, de�ned as:

Rnj
t =

 
pnj

t B nj

�cnj (wn A
t )� nj (zn

t )� nj

! 1= nj

; (12)

where �cnj = ( � nj )� � nj
(� nj )� � nj

( nj )�  nj
. Note that r nj

t (! ) also follows the Fr�echet distri-

bution with shape parameter� > 1 and scale parameter �Rnj
t Anj

t given the distributional

assumption onAnj
t (! ). Properties of the extreme value distribution yield a tractable expres-

sion for the probability that crop j generates the highest land rent among all other crops in a

given plot ! . This probability is equal to the share of land allocated to cropj in country n,

as there is a continuum of plots in each country that share the identical probability of crop

choices. Therefore, the share of land allocated to each cropj in country n is given by:

� nj
t =

(Rnj
t Anj

t )�

P J
k=1 (Rnk

t Ank
t )�

: (13)

Equation (13) shows that crops of higher land productivity, higher market price, lower labor

and intermediate input costs will take a relatively larger share of land. The shape parameter

� governs how much land allocation responds to changes in the rental rate per e�ciency unit

of land Rnj
t or average level of land productivityAnj

t . Therefore, I refer to� as land allocation

elasticity. A higher value of � indicates greater homogeneity in land productivity within a

country for the given crop, leading to larger shifts in response to variations inRnj
t or Anj

t .

Optimal Revenue and Crop Supply | Given optimal land allocation, the optimal crop

revenue and crop supply can be characterized. First, the average rental rate of land for crop

j in country n, conditional on cropj being chosen, denoted as �nt , can be derived as follows:

� n
t = E

�

Rnj
t Anj

t (! )
�
�
�
� Rnj

t Anj
t (! ) 2 arg max

k2J c
Rnk

t Ank
t (! )

�

=

 JX

k=1

(Rnk
t Ank

t )�

! 1=�

: (14)

Let us denote the optimal revenue per unit of land for a given plot! as nj
t (! ). The optimal

revenue from growing cropj in country n can be obtained by the product of land size in

country n, the share of land assigned to cropj , and the average revenue conditional on the

selection of cropj in country n. The country- and crop-level optimal revenue 	nj
t is then
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given by:

	 nj
t = E

�

 nj
t (! )

�
�
�
� Rnj

t Anj
t (! ) 2 arg max

k2J c
Rnk

t Ank
t (! )

�

� nj
t H n

t

= ( Rnj
t Anj

t )� (� n
t )1� �

 
H n

t

 nj

!

:
(15)

Then, the optimal quantity of crop j produced in country n is simply obtained by qnj
t =

�
	 nj

t =pnj
t

�
. Furthermore, the aggregate country-level optimal revenue from crop production,

denoted as 	n
t , can be characterized as:

	 n
t =

JX

j =1

	 nj
t = � n

t H n
t

JX

j =1

 
� nj

t

 nj

!

: (16)

Optimal Input Demands | Optimal demands for labor and intermediate inputs can

be derived with an approach similar to that employed for optimal crop revenue. Let us

denote `nj
t (! ) and mnj

t (! ) as the optimal input demand per unit of land of a given plot!

for labor and intermediate input, respectively. The country- and crop-level input demand

for the production of crop j is the product of the land size of each country, the fraction of

land allocated to the cropj , and the average input demand conditional on cropj being the

rent-maximizing crop among all crop varieties:

`nj
t = E

�

`nj
t (! )

�
�
�
� Rnj

t Anj
t (! ) 2 arg max

k2J c
Rnk

t Ank
t (! )

�

� nj
t H n

t =

 
� nj

wn A
t

!

	 nj
t

mnj
t = E

�

mnj
t (! )

�
�
�
� Rnj

t Anj
t (! ) 2 arg max

k2J c
Rnk

t Ank
t (! )

�

� nj
t H n

t =

 
� nj

zn
t

!

	 nj
t :

(17)

The equations above suggest that the input cost share equals the country- and crop-level

revenue multiplied by the factor intensity, a standard outcome of Cobb-Douglas technology.

Additionally, the country-level aggregate input demands for crop production can be derived

as follows:

`n A
t =

JX

j =1

`nj
t =

�� n
t

wn A
t

	 n
t and mn

t =
JX

j =1

mnj
t =

�� n
t

zn
t

	 n
t ; (18)

where �� n
t =

P J
j =1 � nj

t � nj and �� n
t =

P J
j =1 � nj

t � nj are the weighted averages of factor intensities

for labor and intermediate inputs, respectively, with the weight,� nj
t , being the revenue share

of crop j . This result suggests that the country-level input cost share equals the weighted

factor intensity, similar to the result found at the country- and crop-level input cost shares.

3.7 Non-agricultural Sector

To focus on crop-level agricultural production, the non-agricultural good is modeled with a

parsimonious assumption. The non-agricultural product is produced with labor and structure
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under constant returns to scale technology, described as follows:

qn0
t = An M

t (`n M
t )� n

(Sn
t )1� � n

; (19)

where `n M
t is the labor input, Sn

t is the structure input. Here, An M
t > 0 is an exogenous

total factor productivity (TFP) of the non-agricultural sector and � n 2 (0; 1) represents the

labor intensity in non-agricultural sector production. Under perfect competition, the returns

to labor and structure inputs in non-agricultural goods production are respectively given by:

wn M
t = An M

t � n (`n M
t )� n � 1(Sn

t )1� � n
and �n

t = An M
t (1 � � n )(`n M

t )� n
(Sn

t )� � n
: (20)

3.8 Income Transfers and Budget Constraint

To maintain the model's tractability regarding labor mobility, I introduce the assumption of

income transfers from local governments to households, similar to Redding (2016).11 Local

governments, which own land, intermediate inputs, and structure inputs, evenly redistribute

rental revenues from land and intermediate inputs to households working in the agricultural

sector. Similarly, the local governments evenly distribute rental revenues from structure

inputs to households working in the non-agricultural sector. Perfect competition and zero

equilibrium pro�ts imply that all revenues from the agricultural and non-agricultural sector

are paid to their factors of production, respectively. With the income transfer assumptions,

the total income of households in the agricultural sector simply reduces to the revenue of agri-

cultural production per worker, while the total income of households in the non-agricultural

sector equates to the revenue of non-agricultural production per worker.

E n A
t =

 
	 n

t

Ln A
t

!

and E n A
t =

 
qn0

Ln M
t

!

: (21)

3.9 Market Clearing

Market clearing for crop productsj 2 J implies that the production of goodj in country n

equals the total consumption of that good in all countries, accounting for trade costs� n;m;j
t :

qnj
t =

X

m2N

� n;m;j
t cn;m;j

t ; (22)

where cn;m;j
t =

P
s2S cn;ms;j

t Lms
t is the total consumption of goodj in country m, imported

from country n. Input markets are also cleared, ensuring that labor demand and supply are

11Tracking individual wealth poses considerable challenges in the presence of labor mobility. Consequently,
prior studies have proposed several approaches: (1) allowing redistribution of rental revenues from local
governments to its local agents, (2) constructing a global portfolio that aggregates rental revenues from the
global economy and redistribute to local agents by giving shares, and (3) allowing local immobile factor
owners. For a detailed exploration of distributional assumptions regarding rental revenues, see e.g., Redding
and Rossi-Hansberg (2017).
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equalized in each country-sector pair of labor markets, as well as for intermediate inputs at

the country level.

Lns
t = `ns

t and M n
t = mn

t : (23)

3.10 Competitive Equilibrium

The competitive equilibrium of the economy can be de�ned following Caliendo et al. (2019,

2021) with a group of state variables that describe the economy. The fundamental vari-

ables, or exogenous state variables, include productivitiesA t = f Anj
t ; An M

t gn2N ;j 2J , bilateral

migration costs� = f � ns;mz gn;m 2N ;s;z2S , bilateral trade costs� t = f � m;n;j
t gm2N ;n2N ;j 2J , struc-

ture endowment St = f Sn
t gn2N , land endowmentH t = f H n

t gn2N , and intermediate input

endowmentM t = f M n
t gn2N . The set of time-varying fundamental variables is denoted by

� t � f A t ; � t ; St ; H t ; M tg, and the time-invariant fundamental variable is denoted by�� � f � g.

The endogenous state variable is the population in the labor market for all country-sector

pairs, L t = f Lns
t gn2N ;s2S .

De�nition 3.1 (Temporary equilibrium ). Given (� t ; �� ; L t ), a temporary equilibrium

of the economy is a set of variablesTt (� t ; �� ; L t ) � f ct ; qt ; � t ; pt ; ut ; X t ; wt ; zt ; � tg, where

ct = f cm;ns;j
t gm;n 2N ;s2S ;j 2J , qt = f qnj

t gn2N ;j 2J , � t = f � nj
t gn2N ;j 2J , pt = f pnj

t gn2N ;j 2J , ut =

f uns
t gn2N ;s2S , X t = f X n;m;j

t gn;m 2N ;j 2J , wt = f wns
t gn2N ;s2S , zt = f zn

t gn2N , and � t = f �n
t gn2N

that satisfy the optimality conditions for (a) household's utility maximization problem in

equation (2)-(5), and (21); (b) farmer's pro�t maximization problem in equation (12)-(18);

(c) �rm's pro�t maximization problem in equation (19)-(20); (d) and the market clearing

condition de�ned in equation (22) and (23) of the static problem for each timet.

De�nition 3.2 (Sequential equilibrium ). Given (L0; f � tg1
t=0 ; ��), a sequential equilibrium

is a sequence of variablesf L t ; � t ; Vt ; Tt (� t ; �� ; L t )g1
t=0 , where � t = f � ns;mz

t gn;m 2N ;s;z2S and

Vt = f V ns
t gn2N ;s2S , such that the household dynamic migration problem in equations (7)-(9)

is satis�ed.

4 Solving the Equilibrium

Developing a global-scale agricultural production model poses challenges in terms of both

data availability and computational capacity. A key breakthrough is the application of dy-

namic hat algebra approach introduced in Caliendo et al. (2019), which signi�cantly reduces

the computational burden to solve the multi-region dynamic optimization problem and the

number of fundamental variables to be estimated.12 With dynamic hat algebra, solving the

model involves computing relative changes between timet and t + 1, denoting variables in

12Exact hat algebra, initially introduced in a static trade model by Dekle et al. (2007, 2008), was later
extended to a dynamic setting by Caliendo et al. (2019) incorporating labor mobility. For application of
dynamic hat algebra in other models in the recent literature, see e.g., Caliendo et al. (2019, 2021) and
Kleinman et al. (2023).
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time di�erences (ratios) as _x t+1 = ( x t+1 =xt ) for any variable x t . Suppose an initial alloca-

tion of the economy is observed and information on the future sequence of changes in the

time-varying fundamental variablesf _� tg1
t=1 is provided. The economy att = 0 does not

need to be on a steady state but it is assumed that the economy is transitioning toward

the steady state. To ensure that the model can reach a steady state rather than exploding

or shrinking, it is further assumed that the sequence of time di�erences in the fundamen-

tal variables converges to 1 in the long run, i.e., limt !1 _� t = 1, and that the population

growth rate eventually becomes zero, i.e., limt !1 f gn
t gn2N = 0. To simplify the notation in

the following propositions, let us de�ne the consumption shares assnj
t = ( pnj

t cns;j
t =Pn

t cns;A
t )

and smnj
t = ( pm;n;j

t cm;ns;j
t =pnj

t cns;j
t ), respectively, and denote the set of consumption shares

as st = f snj
t ; smnj

t gm;n 2N ;j 2J . Then Proposition 1 and 2 together characterize the sequential

equilibrium of the model.

Proposition 1 (Solution to the Temporary Equilibrium ). Given the allocation of tem-

porary equilibrium f � t ; st ; L t ; X tg and time di�erences f _L t+1 ; _� t+1 g, the solution to the tem-

porary equilibrium at time t + 1 solves the following set of equations:

1) Aggregate-level demand:
_Cns
t+1 =

�
_cns;A
t+1

� � n �
_cns;M
t+1

� 1� � n

(24)

_cns;A
t+1 =

_E ns
t+1

_Pn
t+1

and _cns;M
t+1 = _E ns

t+1 (25)

2) Crop-level demand:

_cns;j
t+1 =

 _Pnj
t+1

_Pn
t+1

! � {

_cns;A
t+1 ; for j 2 J (26)

_Pn
t+1 =

0

@
X

j 2J c

snj
t ( _Pnj

t+1 )1� {

1

A

1=(1� { )

(27)

snj
t+1 = snj

t

 _Pnj
t+1

_Pn
t+1

! 1� {

(28)

3) Crop- and origin-level demand:

_cm;ns;j
t+1 =

 
_� m;n;j
t+1 _pmj

t+1

_Pnj
t+1

! � �

_cns;j
t+1 ; for j 2 J (29)

_Pnj
t+1 =

 
X

m2N

smnj
t ( _� m;n;j

t+1 _pmj
t+1 )1� �

! 1=(1� � )

(30)

smnj
t+1 = smnj

t

 
_� m;n;j
t+1 _pmj

t+1

_Pnj
t+1

! 1� �

(31)

4) Crop production:
_Rnj

t+1 =
�

_pnj
t+1 ( _wn A

t+1 )� � nj
( _zn

t+1 )� � nj
� 1= nj

(32)
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� nj
t+1 =

� nj
t ( _Rnj

t+1
_Anj
t+1 )�

P J
k=1 � nk

t ( _Rnk
t+1

_Ank
t+1 )�

(33)

_� n
t+1 =

 JX

k=1

� nk
t ( _Rnk

t+1
_Ank
t+1 )�

! 1=�

(34)

_wn A
t+1 =

0

@
P J

j =1 � nj ( nj )� 1� nj
t+1

P J
k=1 � nk ( nk )� 1� nk

t

1

A

 _� n
t+1

_H n
t+1

_Ln A
t+1

!

_zn
t+1 =

0

@
P J

j =1 � nj ( nj )� 1� nj
t+1

P J
k=1 � nk ( nk )� 1� nk

t

1

A

 _� n
t+1

_H n
t+1

_M n
t+1

! (35)

5) Budget constraint:

_E ns
t+1 =

8
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6) Crop market clearing:
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Proof. See Appendix B.1. �

Proposition 2 (Solution to the Sequential Equilibrium ). Given the initial allocation

of the model, (L0; � 0; s0; � � 1; X 0), and the converging sequence of exogenous time-varying

fundamentalsf _� tg1
t=1 , the solution to the sequential equilibrium,f L t+1 ; � t+1 ; Vt+1 g1

t=0 , solves

the following set of equations:

� ns;mz
t+1 =

� ns;mz
t (_vmz

t+2 )�=�

P

~m2N

P

~z2S
� ns; ~m ~z

t (_v~m ~z
t+2 )�=�

(38)

Lns
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X

m2N

X

z2S

� mz;ns
t (1 + gm

t )Lmz
t (39)

_vns
t+1 = _uns

t+1 ( _L t+1 ; _� t+1 )

 
X

m2N

X

z2S

� ns;mz
t (_vmz

t+2 )�=�

! �

; (40)

wherevns
t+1 = exp

�
V ns

t+1

�
and uns

t+1 = exp
�
uns

t+1

�
, and uns

t+1 ( _L t+1 ; _� t+1 ) satis�es the temporary

equilibrium at each timet + 1, for given f _L t+1 ; _� t+1 g.

Proof. See Appendix B.2. �
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Proposition 1 and 2 together suggest that the solution to the dynamic general equilib-

rium model can be obtained by solving a set of nonlinear equations without requiring the

level values of the fundamental variables. This approach is particularly advantageous as it

avoids the di�culties associated with accurately estimating the level of country- and crop-

level land productivity (Anj
t ), as well as the full matrix of bilateral migration (� ns;mz ) and

trade costs (� n;m;j
t ), which is quite challenging given current data limitations in country-level

studies as in this paper. Instead, the model solution makes use of information on initial allo-

cation of migration ows (� ns;mz
� 1 ) and future changes in time-varying fundamental variables

(f _� t+1 g1
t=0 ). The model can be used to simulate the economy's transition path toward steady

state equilibrium when the global agricultural production is facing climate change shocks,

which potentially a�ects both land productivities and size of harvest areas through changes

in multi-cropping practices.

While solving the equilibrium using dynamic hat algebra o�ers great advantages for spa-

tial models with high dimensionality across both space and time, some limitations of this

approach needs to be acknowledged. First, because the equilibrium solution for each time

period depends on the values from the preceding period, the method struggles to account

for situations where a previously zero value becomes positive in the subsequent period. This

limitation could restrict the model's ability to accurately capture crop and migration choices.

For instance, if a country allocates no land to a particular crop in the initial period, the equi-

librium solution does not allow for any future allocation to that crop after climate change.

Similarly, if there are no migration ows between certain labor markets in the initial period,

the model does not permit new migration ows to emerge between these markets in subse-

quent periods. This could lead to an underestimation of the role of crop switching or labor

mobility in the equilibrium solution. However, estimating the exact barriers to adopting new

crops or entering new labor markets is inherently challenging when observed land allocations

or migration ows are at zero. Therefore, the solution obtained using dynamic hat algebra

should be interpreted as capturing intensive margins|changes in existing non-zero cropland

shares and migration ows|rather than extensive margins, which involve shifts from zero to

non-zero cropland shares and migration ows.

5 Bringing Model to Data

This section describes how the model is matched with data to evaluate the impact of climate

change on agricultural crop production. The model is quanti�ed for 10 major crops{rice,

maize, wheat, potato and sweet potato, sugarcane, soybeans, tomatoes, oil palm, cassava,

and bananas{ and 60 regions, covering 145 countries around the world.13 The initial year is

set to 2020, and the model is solved with 5-year step sizes. While the goal of the model is

to evaluate the impact of climate change by 2100, the time horizon extends to 2400 to allow

su�cient time for numerical convergence of the sequential equilibrium. Exogenous climate

13For list of crops and countries, see Table 9 and 10 in the Appendix C.
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change shocks, TFP growth in non-agricultural sector, and population growth are applied

through the end of the century (2025-2100), with the assumption that no further shocks

applied thereafter. The solution algorithm is presented in the Appendix D.1.

5.1 Data Source

This study combines multiple data sources. The key spatial information regarding agricul-

tural production is obtained from the GAEZ version 4 dataset provided by FAO. This dataset

covers projections on the agro-climatic potential yield and potential number of multicrop-

ping practices, along with the current geographical distribution of irrigation availability for

croplands. Other historical data on agriculture sector is sourced from the Food and Agricul-

ture Organization (FAO) dataset, including variables such as production quantity, harvest

area, bilateral trade ows, and producer prices at at both country and crop level. Macroeco-

nomic variables are collected from the World Bank dataset, including sectoral GDP, sectoral

employment, population, birth rates, death rates, and ination rates. Future TFP changes

for non-agricultural sector ( _An M
t+1 ) and population growth rates (gn

t ) are constructed based

on projections from KC and Lutz (2017), assuming SSP2 (Shared Socioeconomic Pathways)

scenario.14 All monetary variables are deated to 2020 USD.

5.2 Climate Change Shocks

In this paper, the climate change shock to the agricultural sector is considered in two dimen-

sions: land productivity and multiple cropping (or multicropping). This subsection describes

how the exogenous climate change shocks to agricultural production are introduced into the

model quanti�cation.

Land Productivity | Previous studies most closely related to this paper{Costinot et al.

(2016) and Gouel and Laborde (2021){ assume a Leontief production technology and di-

rectly maps the agro-climatic potential yield (A nj
t ) from the GAEZ dataset as the total

factor productivity in their models. This approach introduces two potential biases. First,

the agro-climatic potential yield from the GAEZ data only captures agro-climatic condi-

tions under a high-input scenario, without accounting for heterogeneity in realized yields

across countries or crops due to cultural or technological farming practices or limited access

to resources. Consequently, the agro-climatic potential yield can diverge signi�cantly from

realized yields, particularly in developing economies with limited access to mechanized equip-

ment and chemical inputs.15 Second, the potential yield from the GAEZ data is measured

as yield per harvest. Therefore, if the model relies on physical land size, using the GAEZ

yield directly as total factor productivity may severely bias production quantities, especially

in countries where multicropping is prevalent.

14Assuming an exogenous labor path following SSP2, and a time-invariant structure inputSn
t , the TFP

time di�erences _An M
t +1 is constructed to capture the projected trajectory of economic growth.

15GAEZ data also provides information on the `achievement ratio (actual/potential)' for yields.
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In the production technology, the parameterB nj can be interpreted to absorb all the

non-climatic factors a�ecting yield, thereby leaving climatic attributes only to the land pro-

ductivity ( Anj
t ). Importantly, the dynamic hat algebra only exploits the relative changes

over time, without requiring the level of land productivity. I interpret that the GAEZ agro-

climatic potential yield exhibits a linear relationship with land productivity in the model, i.e.,

Anj
t = � nj A nj

t . Even though the land productivity (Anj
t ) and non-climatic e�ciencies (B nj )

are not directly observed, the sequential equilibrium of the model can be solved with dynamic

hat algebra by exploiting that future changes in land productivity can be captured by future

changes in agro-climatic potential yield, i.e.,_Anj
t+1 = _A nj

t+1 . By conditioning on the observed

quantities in the initial period, the model is exactly matched with the observed quantities

of production, consumption, and trade, and can evaluate changes in equilibrium resulting

from productivity shocks from climate change. Speci�cally, these productivity shocks are

introduced by constructing an irrigation-adjusted potential yield at the country level, with

cubic interpolation applied to generate a full time path through 2100. See appendix C.1 for

details.

Multiple Cropping Capacity | Changes in multicropping potentials are closely related

to the e�ective size of harvested areas. For instance, if a �eld previously used for double

cropping per year becomes available only for single cropping, the e�ective harvest area is

reduced to half of its original size. Therefore, in the production function, the land size is

measured in terms of harvested areas rather than physical areas. I capture potential changes

in the size of harvested areas (_H n
t+1 ) in the model by exploiting the changes in (_N n

t+1 ) from the

GAEZ data. In other words, this approach assumes that the size of harvested areas increases

or decreases at the same ratio as the multicropping potential changes. It should be noted

that, similar to agro-climatic potential yield, the multicropping potentials provided by GAEZ

data represent the upper limit of multicropping practices. In reality, observed multicropping

practices may not fully reach this potential multicropping capacity. By conditioning on the

observed harvested areas for land input in the initial period, the model solution therefore

incorporates the realized multicropping practices of the base year, and integrates potential

changes in multicropping capacities thereafter. Similar to the potential yield variable, I

construct an irrigation-adjusted multicropping potential variable at the country level and

use cubic interpolation to generate a continuous time path by 2100.

5.3 Migration Flows

One of the key pieces of information required to solve the model is the initial allocation of

migration ows. Comprehensive data on international migration for all countries is limited.

To the best of the author's knowledge, there is no dataset available that captures migration

ows at both cross-country and cross-sector levels. I construct an expanded migration ows

matrix across countries and sectors, through a decomposition based on the equation (9).

Given the cross-country migration ow estimates from Abel and Cohen (2019), I construct
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domestic sectoral ows from agriculture to non-agriculture (or vice versa), such that domestic

net sectoral ows exactly captures observed changes in sectoral population over time. Details

on the migration ow decomposition are provided in the Appendix D.2. The resulting matrix

of expanded migration ows is constructed for the period 1990-2015, with 5-year intervals, as

it is in the country-level ows from Abel and Cohen (2019). With 60 countries and 2 sectors,

the expanded migration ow matrix comprises 14,400 elements.

Figure 3 summarizes the migration ow estimates expanded at the cross-country and

sector levels. Figure 3a shows the time trend of migration ow shares over the period 1990-

2015, aggregated at the global scale. Excluding migration ows staying in the same labor

market, the largest migration ow is domestic migration from agriculture to non-agriculture,

ranging between 2.26% and 4.76% across the period 1990-2015. All other labor market

switching patterns are below the 1% level across all periods. Both �gure 3b and �gure 3c

present net domestic ows across sectors for the most recent period 2015-2019, with �gure 3b

showing results aggregated across 18 subregions and �gure 3c detailing for 60 countries. The

values in �gure 3b and 3c are the share of net domestic migration ows out of total migration

ows within each country (or subregion), with positive values indicating net domestic ows

from agriculture to non-agriculture, and negative values indicating the reverse.

Most regions exhibit net domestic ows from agriculture to the non-agricultural sector,

with the highest ows observed in Southeastern Asia (4.5%) and Eastern Africa (3.3%). By

country, the largest share of net domestic ows are seen in Vietnam (11.39%), Bangladesh

(5.60%), Laos (5.26%), Myanmar (5.17%). However, there are a few exceptions, with regions

such as Southern Africa and South America experiencing the opposite trends. Peru (-6.70%)

have the highest domestic migration ows from agriculture to non-agriculture, followed by the

Rest of Southern Africa (NSAF2) (-5.2%) and the Rest of Northern Latin America (RNLA) (-

3.43). These patterns may reect the middle-income trap and premature deindustrialization,

characterized by stagnant economic growth and a lack of structural transformation. Countries

such as Peru, South Africa (part of NSFA2), and Equador (part of RNLA) are countries

considered potentially experiencing middle-income premature deindustrialization (Andreoni

and Tregenna, 2021). The model simulation takes the migration ows over 5-year periods

2015-2019 as the initial ows (� � 1) and projects labor mobility thereafter.

5.4 Parameters

Preference Parameters | As the aggregate consumption is a Cobb-Douglas form, the

preference parameter for the agricultural consumption (� n ) is directly constructed using the

FAO data as the consumption share on agricultural goods, based on the year 2020. The

CES preference parameters are adopted from Costinot et al. (2016), with an elasticity of

substitution across origins,� = 5:4, and an elasticity of substitution across crops,� = 2:82.

Agricultural Production Parameters | The factor intensities for crop production ( � nj ; � nj ;  nj )

are key parameters governing market adjustments in the agricultural sector. To calibrate the
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crop-level production input factor intensities, I follow and adapt the approach in Sotelo

(2020), exploiting the relationship between land share and revenue share. Speci�cally, rev-

enue share (� nj
t ) can be expressed as a function of land share (� nj

t ) and land intensity ( nj )

as follows:

� nj
t =

( nj )� 1� nj
t

P J
k=1 ( nk )� 1� nk

t
(41)

The model implies that, for any countryn, crops with systematically higher revenue share

relative to its land allocation share in equilibrium have lower land intensity, and vice versa. I

assume that the country- and crop-speci�c land intensity can be multiplicatively decomposed

into country-speci�c and crop-speci�c components, i.e., nj =  n  j . Taking log of equation

(41), it follows:

log
�
� nj

t

�
= log

�
� nj

t

�
+ log

�
( j )� 1

�

| {z }
D j

+ log
�
( n )� 1

�
� log

 JX

k=1

( nk )� 1� nk
t

!

| {z }
D n

t

(42)

Assuming the above relationship is observed with an error� nj
t , the following equation is

considered for regression:

log
�
� nj

t

�
= log

�
� nj

t

�
+ D j + D n

t + � nj
t ; (43)

whereD j denotes crop-speci�c dummies andD n
t denotes country- and time-speci�c dummies.

Dropping a baseline crop in the regression, the coe�cientbj for D j captures the �xed e�ect

of crop j relative to the baseline crop. Then crop-speci�c component of land intensity j can

be captured by:

 j =
1

exp(bj )
 base; (44)

where base is a land intensity of the baseline crop. I setPotato and sweet potato(RT1) as the

baseline crop as it is the most widely grown crop across countries. I use FAO data on harvested

areas, production quantity, and trade unit price for the period 2000-2020 to construct panel

data on harvested land share and revenue share to run the regression. The regression result

is presented in Table 2. The coe�cient of log
�
� nj

t

�
is obtained as 0.951, which is close to the

model prediction of 1. Crop dummy coe�cient bj greater than zero indicate that the crop

is less land-intensive relative to the base crop, while negative coe�cient suggest higher land

intensity, compared to the base crop. All crop dummy coe�cients are statistically signi�cant,

except for that of sugar cane.

Ideally, the model could be calibrated using country- and crop-speci�c land intensities to

capture both cross-country and cross-crop heterogeneity. However, due to data limitations,

I assume that factor intensities are the same across countries, i.e., nj =  j . 16 Farrokhi

16To the best of the author's knowledge, no recent studies systematically estimate the land input cost share
speci�cally for crop production across all countries worldwide. U.S. Department of Agriculture, Economic
Research Service (2023) provides input cost share estimates in agricultural production for most countries,
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and Pellegrina (2023) calibrates the factor intensities in crop production to be 0:206 for

land, 0:207 for labor, and 0:587 for intermediate inputs, for modern technology. In Farrokhi

and Pellegrina (2023), the land use data by crop is obtained from the GAEZ data as well,

whose �eld-level values are consistent with the country-level data in the FAO, and the unit

is harvested areas, not physical areas. Also, in Farrokhi and Pellegrina (2023), the use of

intermediate inputs in modern technology corresponds to the use of chemical fertilizer. After

estimating the crop speci�c coe�cient bj , I normalize the revenue-weighted input share of

land to be � n = 0:206. Speci�cally,

� n =
X

j 2J

oj  nj =
X

j 2J

oj  n 1
exp(bj )

 base; (45)

where oj is the revenue share of cropj globally, for which I construct the ten-year average

over the 2010{2020 period. Then crop-speci�c component of land intensity for the baseline

crop is:

 base =

0

@
X

j 2J

� nj exp
�
� bj

�
1

A

� 1
� n

 n
: (46)

Substituting the equation (44) and (46) into nj =  n  j , the factor intensity of land for crop

j is as follows:

 nj =
exp(� bj )

P
j 2J � nj exp(� bj )

� n : (47)

After recovering land intensities ( nj ), factor intensities for labor (� nj ) and intermediate

inputs (� nj ) are calibrated such that the relative input share of labor to intermediate inputs

matches the ratio in Farrokhi and Pellegrina (2023), i.e.,� nj =� nj = 0:207=0:587, and factor

intensities for all inputs sum to 1.

The calibrated factor intensities for all 10 crops are displayed in Table 3. Crops such

as tomatoes and bananas exhibit relatively low land intensity, while cereal crops and staple

grains, such as maize, wheat, and soybeans, are relatively more land-intensive. Figure 4

displays the model �t of the estimated land intensities for the targeted moment in equation

(41). Without including any �xed e�ects, the model predicted revenue share (^� nj
t ), given the

estimated land intensities and observed harvested share of land (� nj
t ), can explain approxi-

mately R2 = 86:77% of variation in the observed revenue share, con�rming that there exists

large heterogeneity in land intensity across crops.

Lastly, the land allocation elasticity is assumed to be� = 1:38 following estimates in Far-

rokhi and Pellegrina (2023), which also employs global crop production data. In other studies,

Sotelo (2020) estimates this parameter at� = 1:658 using Peruvian data, and Costinot et al.

(2016) estimates this parameter at� = 2:46.

Non-Agriculture Production Parameters | The labor intensity parameter for non-

but these estimates encompass crop, livestock, and aquaculture sectors (Fuglie, 2015). In countries with
signi�cant reliance on aquaculture, for example, the reported input cost shares may not accurately reect
the land input cost share for crop production.
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agricultural production, � n , is constructed using share of labor compensation in total value

added, based on data from the World Input-Output Database (WIOD) for the year 2014.

Migration Elasticity | Solving the sequential equilibrium requires migration elasticity

(1=� ), a parameter governing how much migration responds to the relative changes in lifetime

expected utilities|and ultimately real income|across labor markets. All other things being

equal, the migration elasticity is expected to be larger over longer time intervals, as households

are more likely to adjust through labor reallocation over longer period intervals. In previous

studies, Caliendo et al. (2019) estimates migration elasticity using internal migration data

from the US, �nding � = 5:34 for the quarterly interval and � = 2:02 for the annual interval,

and Caliendo et al. (2021) estimates annual migration elasticity at� = 2 using migration ows

among countries within the EU. At the same time, however, cross-country and cross-sector

migration, as in this study, is likely to have lower migration elasticity compared to within-

country or intra-EU migration. In a related study, Cruz (2023) estimates this elasticity at

� = 6:67, with quinquennial step size and its data covering 6 sectors and 287 regions around

the world.

Following Artu�c et al. (2010) and Caliendo et al. (2019), I estimate the migration elasticity

using the expanded migration ows data, based on the following equation:

1
�

log(� ns;mz
t =� ns;ns

t ) � log(� ns;mz
t+1 =� mz;mz

t+1 ) =
1
�

log
�
E mz

t+1 =Ens
t+1

�
+ D m;n

t + � t+1 ; (48)

where the coe�cient of log
�
E mz

t+1 =Ens
t+1

�
captures the migration elasticity (1=� ), and D n;m

t

represents the origin-destination-time �xed e�ects. For details of estimation, see Appendix

D.3. Two identi�cation concerns arise here. The �rst, inherent to this structural estimation,

is that the OLS estimates 1=� are likely to be biased if there exists any shockst +1, contained

in the residual, a�ect both the income at timet + 1 and the migration decision at timet. To

address this, following Artu�c et al. (2010), I use log
�
E mz

t� 1=Ens
t � 1

�
as an instrumental variable

for the log
�
E mz

t+1 =Ens
t+1

�
, given the assumption that income at timet � 1 is uncorrelated

with the contemporaneous shock at timet + 1. With this identi�cation strategy, the period

available for estimation in the panel data reduces from 1990-2015 to 1995-2010, with 5-year

intervals. The validity of this lagged instrumental variable, however, can be violated if there

exists serial correlations in the income variable (Ahlfeldt et al., 2020). The second concern

is regarding the migration ows data, since the country-sector level migration ows data is

constructed under some assumptions at the sectoral level (see Appendix D.2). The dependent

variable may therefore su�er from measurement error. However, if the measurement error

is independent of the regressors, the measurement error can be absorbed in the error term

and does not lead to bias (Greene, 2017). Acknowledging that the estimation of migration

elasticity for global migration ows is likely to be weak, the results should be interpreted

with caution.

Table 4 shows that the estimated migration elasticity ranges from 0.118 to 0.281, and

the regression with IV leads to higher migration elasticity, which is consistent with �ndings
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in Artu�c et al. (2010). I estimate the migration elasticity for the entire pair of migration

ows (column 1-2)17, and also only for the domestic migration ows, i.e.,n = m (column

3-4). I �nd that the migration elasticity for the domestic ows only leads to higher migration

elasticity (� = 3:564), compared to the migration elasticity obtained using the entire dataset

(� = 7:864). This may suggest that domestic sectoral migration is more responsive to in-

come, compared to international migration ows. While model framework does not allow for

heterogeneous migration elasticity,18 I choose migration elasticity at� = 4 for the baseline

analysis, considering that migration ows that are driving the changes in population are

largely domestic sectoral ows, and the international migration ows are relatively smaller.

6 Results

6.1 Impact of Climate Change on the Agricultural Sector

Structural Transformation | The analysis begins by examining the labor market conse-

quences, with a particular focus on the share of agricultural employment, a key measure of

structural transformation. Figure 5a depicts the simulated time path of employment shares

in the agriculture sector, aggregated at 18 sub-regions. The �gure shows historical data for

the period 1990{2020, with model simulations extending beyond 2020. The model predicts a

consistent and gradual decline in agricultural employment shares across most regions, indicat-

ing a structural transformation from agriculture to non-agriculture, driven by sectoral labor

mobility. Notable declines in agricultural employment are projected in regions such as Middle

Africa, Southeast Asia, and Western Asia. Conversely, Southern Africa and South America

deviate from this pattern, with labor reallocating back to the agricultural sector, reecting

an opposite trend of structural transformation. These results should be interpreted in light

of the model being quanti�ed conditional on the initial period observations{migration ows

� ns;mz
� 1 are de�ned over 2015-2019; the model simulation projects the reversal of structural

transformation trend as observed in the initial period in those regions. Regions experiencing

a sharp decline in agricultural employment share during 2015-2019 implies that those regions

exhibit a large income gap between agricultural and non-agricultural sectors, combined with

relatively lower migration frictions, resulting in a strong force of labor reallocation continued

in subsequent periods. In regions displaying the opposite trend of structural transformation

in the model simulation periods, this pattern is consistent with observed migration ows back

into the agricultural sector during the 2015{2019 period.

The structural model provides a framework to analyze how climate change shocks a�ect

labor markets within a general equilibrium context. Figure 5b illustrates the percentage

point (p.p.) change in the share of agricultural workers under a climate change shock relative

17The entire pair of migration share data is constructed as 57,600 combinations: 60 countries� 60 countries
� 2 sectors� 2 sectors� 4 periods.

18Sun (2024) introduces dynamic nested logit migration model to allow for heterogeneous migration elas-
ticities. To preserve parsimony of the model, I keep the current model speci�cation.
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to an economy una�ected by such a shock, aggregated at the 18 sub-regional level. The

change in the share of agricultural employment ranges from a decline of� 0:72 percentage

points to an increase of 0:23 percentage points by 2100. Notably, regions such as Northern

and Western Africa exhibit a lower agricultural employment share due to the climate change

shock, suggesting that structural transformation out of agriculture could be accelerated by

negative income shocks in these areas. Conversely, regions like Central Asia, Southern Africa,

and Eastern Africa are projected to experience an increase in agricultural employment share

under the same scenario, implying that positive income shocks in the agricultural sector could

slow the pace of structural transformation.

Welfare E�ects | The next step involves quantifying the welfare consequences of the

climate change shock on the agricultural sector. Following Caliendo et al. (2019), the con-

sumption equivalent variation is employed to measure welfare changes. At timet = 0, the

consumption equivalent variation in the labor marketns, Qns , is de�ned such that

~V ns
0 � V ns

0 =
1X

t=0

� t log(Qns); (49)

where ~V ns
0 denotes the expected lifetime utility of an alternative or counterfactual scenario,

and V ns
0 is that of the baseline scenario. Then consumption equivalent variation reduces to

the following expression19:

Ŵ ns = log( Qns) =
1X

t=1

� t log

 
Ĉns

t

(�̂ ns;ns
t )�

!

; (50)

where Ĉns
t =

�
~Cns

t =Cns
t

�
=

�
~Cns

t � 1=Cns
t � 1

�
and �̂ ns;ns

t = (~� ns;ns
t =� ns;ns

t ) =(~� ns;ns
t � 1 =� ns;ns

t � 1 ), with ~x

notation referring to the corresponding variables in the alternative scenarios. Given that the

percent change is a linear approximation of logarithmic di�erence forQns ' 1, the welfare

measureŴ ns can be interpreted as percentage changes in consumption.

Figure 6 presents the welfare e�ects of climate change under the RCP 8.5 scenario

(HadGEM2-ES) on workers in agricultural sector. Figure 6a shows the welfare e�ects of

climate change under RCP 8.5, relative to an economy without climate change shocks, using

a benchmark model that incorporates labor mobility. The global aggregate welfare e�ects of

climate change on agricultural workers is around 0.013%, calculated by weighting the agri-

cultural workers across countries in year 2020. While this aggregate �gure might suggest

limited overall harm to agricultural workers globally, substantial spatial heterogeneity exists

across countries, ranging from� 1:23% to 3:85%. Countries in northern and middle of Africa,

as well as Australia, are among the most negatively a�ected, while regions such as Mongolia,

Canada, Russia, and South Africa experience positive welfare e�ects from climate change.

The evolving comparative advantage in crop production over time is reected in the tran-

sition of land share allocated for di�erent crops, as depicted for major countries in Figure

19For derivation, refer to Appendix A.2 in Caliendo et al. (2019).
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E.1 -E.3. Notable shifts in land share are projected in some countries: In North America, the

United States is expected to increase its share dedicated to wheat, while reducing the land

share for maize and soybeans. In South America, both Brazil and Argentina are projected

to allocate less land to soybeans, which is currently occupies the largest land share, while

the share devoted to maize expands over time. Despite these adjustments, most countries in

South America are projected to experience reduced welfare due to climate change. In Eu-

rope, Ukraine, a major agricultural producer, is expected to steadily increase its land share

in wheat, indicating an increasing comparative advantage in wheat production. In Asia and

Oceania, a notable case is Australia, where land allocation remains relatively stable, with

over 90% of land dedicated to a single crop, wheat. This high degree of specialization, com-

bined with declining land productivity and multicropping capacity, suggests that Australia's

agricultural production may face the most severe negative welfare e�ects (� 1:23%), with

limited room of adaptation under the baseline scenario. High specialization in a single crop

does not always lead to negative welfare outcomes, however; for instance, Mongolia, which

also dedicates over 90% of its land to wheat, is expected to experience the greatest welfare

gains (3:85%) among the countries studied.

The country-level welfare e�ects examined in this analysis are relatively modest com-

pared to �ndings in previous studies (Costinot et al., 2016; Gouel and Laborde, 2021). In

these studies, welfare changes are reported as percentage of GDP by obtaining equivalent

variation, ranging between -49.07% to 1.43% (Costinot et al., 2016), and -14.59% to 15.76%

(Gouel and Laborde, 2021). Several factors likely contribute to this discrepancy. First, this

study quanti�es welfare e�ects within a dynamic framework, in which climate change shocks

unfold incrementally in �ve-year intervals, allowing gradual market adjustments through pro-

duction, trade, and labor market mechanisms. In contrast, previous studies evaluated climate

change shocks within a static framework, where a sudden productivity shock is introduced at

the 2071-2100 (2080s) level. Notably, labor market adjustments with bilateral migration fric-

tions are explicitly modeled here, an aspect abstracted from previous studies. Furthermore,

while previous studies assume a Leontief production structure that precludes any substitu-

tion among inputs (land and labor), this study employs a Cobb-Douglas production func-

tion that permits substitution among land, labor, and intermediate inputs. Consequently,

when land productivity is negatively a�ected from climate change, farmers can adjust by

increasing their use of labor or other intermediate inputs. With all market adjustment mech-

anisms|production, trade, and labor reallocation|in place, the general equilibrium e�ects

of climate change on the agricultural sector can be more modest than previous studies have

indicated.

To examine the role of labor mobility under the climate change shocks, Figure 6b, dis-

plays the welfare e�ects of climate change under RCP 8.5, as in the previous �gure, but

without allowing labor mobility. Labor is assumed to remain �xed at its level of initial pe-

riod across all countries and sectors. A comparison between Figures 6a and 6b reveals that

restricting labor mobility signi�cantly ampli�es the welfare impact: countries experiencing
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worsening conditions under climate change deteriorate signi�cantly without mobility, while

those bene�ting from climate change see markedly enhanced gains in the absence of mobility.

Speci�cally, country-level welfare e�ects ranges from -5.16% to 7.46% when labor mobility

is not allowed. This outcome reects households' ability to respond to both positive and

negative income shocks from climate change by relocating to more attractive labor markets

or away from less attractive ones. Without this adjustment mechanism, welfare impacts are

more pronounced. This result suggests that labor mobility plays a crucial role in mitigating

the adverse impacts of climate change and that abstracting from labor market adjustments

may lead to an overestimation of these impacts.

6.2 Policy Analysis

Migration Costs | The key parameters related to labor mobility are bilateral migra-

tion costs, which encompass not only economic but also institutional, political, and cultural

barriers. A useful approach to analyzing implications of migration policy is to examine coun-

terfactual scenarios on di�erent migration costs. In this analysis, I consider counterfactual

scenarios where all or some of the migration costs become in�nitely high, thereby restricting

labor mobility. Outcomes are then compared between two economies with di�erent migration

costs, with all else held constant, including the presence of climate change shocks. Welfare

e�ects are again measured in terms of consumption equivalent variation. Details on the

derivation for counterfactual analysis are provided in the Appendix B.3.

Before introducing the counterfactual results, it is useful to revisit the Bellman equation.

Rearranging the equation (6) and taking expectation over a vector� t , it follows

V ns
t = uns

t + �V ns
t+1 + Et

�

max
m2N ;z2S

n
�V mz

t+1 � �V ns
t+1 � � ns;mz + �� mz

t

o�

| {z }
�O ns

t

: (51)

The above equation shows that, expected lifetime utility of a household in labor marketns

consists of three components; current period utility (uns
t ), base value of staying the same

labor market (�V ns
t+1 ), and the value of moving to a potentially better labor market (Ons

t ).

The last component has been called as theoption valuein the literature (Artu�c et al., 2010).

Assuming there is no cost staying in the same labor market (� ns;ns = 0), it follows Ons
t � 0,

implying that the possibility of labor mobility in future periods itself can generate welfare

gains. However, the net welfare e�ect of migration depends on both the second and third

terms, as labor mobility can also alter the prospects of all labor markets, including the current

one.

The �rst counterfactual analysis examines the welfare e�ects of baseline labor mobility.

This is done by comparing an economy with baseline labor mobility|both cross-country

and cross-sector migration at the current level of migration costs|to an economy where

labor mobility is entirely restricted, i.e., � ns;mz ! 1 for all n; s; m; z. Figure 7a shows

the welfare e�ects of labor mobility for workers in agricultural sector, revealing a global
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aggregate welfare e�ects of 14.27%. Substantial welfare gains are projected for countries

such as Vietnam (42.7%), Philippines (30.7%), and Bangladesh (26.5%), which are countries

with relatively high mobility ows out of the agricultural sector. Conversely, countries like

Italy (-39.1%), Peru (-35.14%), and Southern Africa (-33.7%) experience welfare losses among

agricultural workers as a result of labor mobility. The welfare outcomes are closely related

to the model's assumption that income is de�ned as sector-speci�c GDP per capita, with

decreasing returns to labor in agricultural production. In labor markets experiencing net

outows, the base value of remaining in the same market increases as the population in

that market declines over time, thereby increasing per capita income; the opposite holds for

markets with net inows. Interestingly, agricultural workers in countries such as the US,

Canada, and Russia experience welfare losses due to labor mobility, despite the agricultural

sector in these countries facing net outows. This occurs because the positive income shock

from climate change attracts more labor into the agricultural sector over time, resulting in

lower per capita income for agricultural workers in these countries compared to an economy

without mobility.

The second counterfactual analysis focuses on the welfare e�ects of domestic structural

transformation. In this scenario, cross-country migration is prohibited, but households can

still migrate between sectors domestically. Speci�cally, domestic sectoral migration costs

remain at their current levels, while cross-country migration costs becomes in�nitely high,

i.e., � ns;mz ! 1 for all n 6= m, due to a sudden shock in the initial period (t = 0). Welfare

e�ects are then similarly examined by comparing an economy with only domestic sectoral

labor mobility to one where labor mobility is entirely restricted. Figure 7b shows the welfare

e�ects of allowing domestic labor mobility for agricultural workers are close to the results

found in Figure 7a. This outcome aligns with the empirical observation in Figure 3a that

large share of labor mobility occurs through domestic sectoral switches rather than cross-

country migration. Comparison of welfare e�ects under baseline mobility and domestic-only

mobility is displayed in Figure E.4 in the appendix. Although the welfare e�ects are highly

correlated across the two scenarios, they are slightly higher under the domestic-only mobility

scenario for many countries. This result may seem counterintuitive, as restricting mobility

options is likely to reduce the option value. This outcome, however, arises because domestic-

only mobility scenario can increase the base value of remaining in the same labor market,

leading to higher net welfare e�ects. Consider a country with net domestic outows in the

agricultural sector|without the possibility of international inows, the agricultural sector

population under domestic-only mobility scenario can fall below the levels projected under

baseline mobility scenario. Consequently, per capita income for agricultural workers could

be higher under the domestic-only mobility scenario in equilibrium, raising the base value of

remaining in the same labor market despite restricted mobility options.

Di�erent model assumptions about income redistribution may a�ect the magnitude of

welfare outcomes, but the primary insight from this policy analysis is that labor mobility has

a substantial welfare impact for workers in agricultural sector|potentially even exceeding
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the welfare impact of climate change shocks (RCP8.5) itself in many countries. The wel-

fare gains from labor mobility are driven largely by domestic sectoral mobility rather than

international migration. This does not mean that international mobility is not e�ective in

improving welfare consequences; rather, it reects that, given the higher costs associated

with international migration compared to domestic cross-sector mobility, the option value of

switching sectors can yield much larger welfare gains than the option value of moving across

countries. The large welfare gains from labor mobility also reect substantial income gap

between the agricultural and non-agricultural sectors, suggesting that addressing the system-

atic and prevalent sectoral income inequality around the world remains an important task,

alongside e�orts to tackle climate change. Facilitating labor mobility, particularly through

structural transformations away from agriculture toward other sectors, appears crucial in

mitigating the welfare impacts of climate change shocks for those working in the agricultural

sector.

6.3 Sensitivity Analysis

Other Climate Scenarios | While the model simulation uses the RCP 8.5 scenario from

HadGEM2-ES as the baseline, I also conduct welfare analysis with other climate scenar-

ios. Five climate scenarios are available for RCP 4.5 and RCP 8.5, respectively, from the

following models: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM,

and NorESM1-M. The welfare e�ects of these climate scenarios are provided in Appendix

E.2. Overall, the welfare e�ects are similar across di�erent climate models, although a few

countries, such as Australia, exhibit somewhat varying welfare predictions across scenarios.

7 Conclusion

This paper evaluates the impact of climate change shocks on agricultural production by

quantifying a dynamic spatial general equilibrium model that incorporates three key market

adjustment mechanisms: farmers' crop choice, international trade, and forward-looking dy-

namic labor reallocation. Findings indicate that, under RCP 8.5, the overall global welfare

e�ect on agricultural workers may remain modest; however, welfare e�ects vary substantially

across countries. The results also highlight labor mobility as a crucial adjustment mecha-

nism in response to climate change shocks. When labor mobility is restricted, the welfare

impacts of climate change are ampli�ed in both positive and negative directions. The labor

reallocation adjustment mechanism emphasized in this study complements previous research,

which underscores the mitigating role of market adjustments|through crop choice and in-

ternational trade|against climate change shocks (Costinot et al., 2016; Gouel and Laborde,

2021). Finally, counterfactual analysis with migration costs shows that labor mobility brings

welfare gains for agricultural workers in most countries. Given current migration frictions,

these welfare gains are largely driven by domestic sectoral labor mobility rather than inter-
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national mobility. This �nding suggests that facilitating structural transformation out of

agriculture in developing economies|many of which are likely to experience negative income

shocks in the agricultural sector|could serve as an important mitigation strategy against

potential adverse impacts of climate change.

This study primarily focuses on the e�ects of climate change shocks on agriculture, ab-

stracting from certain factors that could be explored in future work. For instance, while the

analysis does not consider future agricultural productivity growth from new technologies or

land use changes across sectors, such as conversions between forests, croplands, and urban

areas, these could be integrated in subsequent research. Additionally, the climate change

shocks derived from GAEZ data capture average trends in agro-climatic conditions but do

not incorporate volatility from extreme events such as oods, typhoons, and other natural

disasters. The �ndings of this study indeed suggest that, while the impact of climate change

could remain within a modest range with gradual shifts in agro-climatic conditions and full

market adjustments in production, trade, and labor reallocation, the emerging priority may

be addressing the heightened risks associated with extreme weather events in agricultural

sector. Modeling these events would involve introducing uncertainty, similar to the stochas-

tic approaches as in Cai et al. (2017) and Cai and Lontzek (2019), though this may present

challenges such as the `curse of dimensionality' in complex multi-country, multi-sector mod-

els. Extending this dynamic spatial framework to incorporate these and other economic

dimensions could o�er valuable insights in future studies.
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